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What I would like to take notes of:
1. State the theorem / definition, expand with some intuition / memory aids
2. Write the proof by myself if deemed useful for an exam
3. Name some examples only if very helpful

These notes should serve as condensed revision material - only the minimal, important facts to
remember before solving problems

Note on order: Many scripts used for teaching introduce concepts as they become relevant. My goal
is to build a revision reference, not a learning resource, therefore over time the order will be
rearranged to group relevant definitions and theorems together.

Proofs heavily involve decomposition; to progress, smaller Lemmas need to be brought in along the
way and proven (or taken as true since someone else proved them). However first of all, you need to
understand and remember the axioms (rules of the game). Intuition is helpful but doesn’t prove
anything unless it can be formulated as a series of statements a computer can verify

Mathematics - Abstracting enough to focus on the matter

Contradiction is a useful tool for linking statements about > and ≥. When in doubt, assume by
contradiction

Conjecture - A conclusion formed on the basis of incomplete information Prove uniqueness through
trichotomy, existence by completeness axiom. The convergence of a sequence can be simplified by
considering long-term values of n, for example 𝑛 > |𝑥| which often simplifies the n’th term (as in
the case of Bernoulli’s sequence for 𝑒) Finding two convergent boundaries around a sequence can be
used to find its limit (squeeze theorem)

TODO: Read Einsiedler einführung

https://metaphor.ethz.ch/x/2023/hs/401-1261-07L/ex/LectureNotes.pdf
https://link.springer.com/book/10.1007/b137107


1. Fundamentals
1.0.1. Definition - Set
An unordered collection of distinct ({𝑥, 𝑥} ≡ {𝑥}) elements such that:
1. It is defined by the elements it contains
2. It is not an element of itself, this prevents Russell’s Paradox: {𝑥 | 𝑥 ∉ 𝑥}
3. Its elements can be filtered by a series of statements which hold true, for example the set of even

integers:

{𝑛 ∈ ℤ | ∃𝑚 ∈ ℤ : 𝑛 = 2𝑚}

Where | and : both mean “such that”.
4. The empty set ∅ contains no elements

1.0.2. Definition - Cartesian Product
For the sets 𝑋, 𝑌 , the Cartesian product is the set of tuples (ordered lists): 𝑋 × 𝑌 ≔ {(𝑥, 𝑦) | 𝑥 ∈
𝑋, 𝑦 ∈ 𝑌 }
• The number of elements in the set is:

|𝑋 × 𝑌 | = |𝑋| ⋅ |𝑌 |

Example:

𝑋 ≔ {0, 1}, 𝑌 ≔ {𝛼, 𝛽}
𝑋 × 𝑌 ≔ {(0, 𝛼), (0, 𝛽), (1, 𝛼), (1, 𝛽)}

1.0.3. Definition - Subset
A set whose elements are entirely contained in a parent set with the following notation:
• 𝑃 ⊆ 𝑄 - 𝑃  is a subset of 𝑄 and they may be equal
• 𝑃 ⊊ 𝑄 - 𝑃  is a proper subset of 𝑄; 𝑄 has at least 1 additional element
• 𝑃 ⊄ 𝑄 - There is at least one element in 𝑃  that is not in 𝑄
• The same applies in reverse using sup(er)set notation ⊇
• The symbols ⊂ and ⊃ are ambiguous in meaning
• Two sets can be shown to be equal if 𝑃 ⊆ 𝑄 ∧ 𝑄 ⊆ 𝑃  holds true

1.0.4. Definition - Power Set
The power set of a set 𝑋 is the set of all subsets:

𝒫(𝑋) ≔ {Set 𝑄 | 𝑄 ⊆ 𝑋}

Example:

𝑋 = {0, 1, 2}
𝒫(𝑋) = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}

1.0.5. Definition - Interval Notation
Interval notation allows us to succinctly express common sets of real numbers between limits 𝑎, 𝑏 ∈
ℝ:
• Closed interval

[𝑎, 𝑏] ≔ {𝑥 ∈ ℝ | 𝑎 ≤ 𝑥 ≤ 𝑏}
• Open interval



(𝑎, 𝑏) ≔ {𝑥 ∈ ℝ | 𝑎 < 𝑥 < 𝑏}
• Half-open interval

[𝑎, 𝑏) ≔ {𝑥 ∈ ℝ | 𝑎 ≤ 𝑥 < 𝑏}
• Unbounded interval

[𝑎, ∞) ≔ {𝑥 ∈ ℝ | 𝑎 ≤ 𝑥}
• For a non-empty interval, the length is defined as 𝑏 − 𝑎
• Sometimes inverted square brackets are used to specify an open bound, ex. [𝑎, 𝑏[
• The intersection of a finite number of intervals is also an interval, such that the lower bound is the

smallest lower bound and vice versa for the upper bound
• Sets aren’t doors, they don’t need to be either open or closed.

1.0.6. Definition - Set Operations
This allows us to construct common sets from component sets 𝑃 , 𝑄:
• Intersection:

𝑃 ∩ 𝑄 ≔ {𝑥 ∈ 𝑃 | 𝑥 ∈ 𝑄}
• Union:

𝑃 ∪ 𝑄 ≔ {𝑥 ∈ 𝑃 ∨ 𝑥 ∈ 𝑄}
• Relative Complement:

𝑃 \ 𝑄 ≔ {𝑥 ∈ 𝑃 | 𝑥 ∉ 𝑄}
• Complement of a Subset:

𝑅 ⊆ 𝑋
𝑅∁ ≔ {𝑥 ∈ 𝑋 | 𝑥 ∉ 𝑅}

• Symmetric Difference:

𝑃 ▵ 𝑄 ≔ (𝑃 ∪ 𝑄) \ (𝑃 ∩ 𝑄)
• Addition:

𝑃 + 𝑄 ≔ {𝑝 + 𝑞 | 𝑝 ∈ 𝑃 ∧ 𝑞 ∈ 𝑄}
• Multiplication:

𝑃 ⋅ 𝑄 ≔ {𝑝 ⋅ 𝑞 | 𝑝 ∈ 𝑃 ∧ 𝑞 ∈ 𝑄}
• They are distributive:

𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)
𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)

• Let 𝔸 be a set of sets, we can also define:

⋂
𝐴∈𝔸

𝐴 ≔ {𝑥 | ∃𝐴 ∈ 𝔸 | 𝑥 ∈ 𝐴}

⋃
𝐴∈𝔸

𝐴 ≔ {𝑥 | ∀𝐴 ∈ 𝔸 | 𝑥 ∈ 𝐴}

1.0.7. Theorem - De Morgan’s Laws
This states:



(𝐴 ∩ 𝐵 ∩ …)∁ = 𝐴∁ ∪ 𝐵∁ ∪ …∁

(𝐴 ∪ 𝐵 ∪ …)∁ = 𝐴∁ ∩ 𝐵∁ ∩ …∁

It is commonly applied to Boolean logic, where 𝐴, 𝐵 ⊊ {0, 1}:

𝐴 ∧ 𝐵 ∧ … ≡ 𝐴 ∨ 𝐵 ∨ …

1.0.8. Definition - Maxima and Minima
The maximum of a set is the smallest upper bound, which is contained in the set:

𝑋 ⊆
max(𝑋) ≔ 𝑚 ∈ 𝑋 | ∀𝑥 ∈ 𝑋𝑥 ≤ 𝑚

The minimum is defined analogously:

min(𝑋) ≔ 𝑚 ∈ 𝑋 | ∀𝑥 ∈ 𝑋𝑥 ≥ 𝑚

• An open bound has no maximum or minimum defined as there is always some number slightly
larger / smaller than a number we can express inside it. An open bound itself is not in the set

• The maximum / minimum is unique. Proof: Let 𝑚1, 𝑚2 be 2 maxima of the set. It follows 𝑚1 ≤
𝑚2 and 𝑚2 ≤ 𝑚1, therefore 𝑚1 = 𝑚2 (trichotomy)

1.0.9. Definition - Supremum and Infimum
Let 𝐵 = {𝑏 ∈ ℝ | ∀𝑥 ∈ 𝑋𝑥 ≤ (≥)𝑏} be the set of upper (lower) bounds for the set 𝑋. The
supremum (infimum) is defined as the smallest (largest) such bound:

sup(𝑋) ≔ min(𝐵)
inf(𝑋) ≔ max((𝐵))

• Due to the ≤ (≥) the supremum infimum may be the same as the maximum / minimum for a
closed bound

• An alternative characterization states there is no smaller bound, anything smaller is not a bound
of 𝑋:

∀𝑥 ∈ 𝑋𝑥 ≤ sup(𝑋), 𝑡 ≤ sup(𝑋) ⇒ ∃𝑥′ ∈ 𝑋 : 𝑡 < 𝑥′

• The supremum / infimum does not exist for an unbounded or empty set, as this would be
infinitely large / small, and ∞ ∉ ℝ ∴ ∞ ∉ 𝐵

• For all bounded, non-empty sets 𝑋, the supremum / infimum exists.
Proof:
The set of bounds 𝐵 = {𝑏 ∈ ℝ | ∀𝑥 ∈ 𝑋𝑥 ≤ (≥)𝑏} ≠ ∅
We need to show that ∃ sup(𝑋) ∈ ℝ | ∀𝑏 ∈ 𝐵, sup(𝑋) ≤ 𝑏
Lemma: Completeness Axiom ∀𝑥 ∈ 𝑋∀𝑏 ∈ 𝐵, 𝑥 ≤ 𝑏 ⇒ ∃𝑐 ∈ ℝ | 𝑥 ≤ 𝑐 ≤ 𝑏∀𝑥 ∈ 𝑋∀𝑏 ∈ 𝐵 This
𝑐 is an upper bound and minimum of 𝐵, therefore it is the supremum ∎

Let 𝑋, 𝑌  be non-empty sets with an upper bound:
• sup(𝑋 ∪ 𝑌 ) = max(sup(𝑋), sup(𝑌 ))
• sup(𝑋 ∩ 𝑌 ) = min(sup(𝑋), sup(𝑌 )) | (𝑋 ∩ 𝑌 ) ≠ ∅
• sup(𝑋 + 𝑌 ) = sup(𝑋) + sup(𝑌 )
• sup(𝑋 ⋅ 𝑌 ) = sup(𝑋) ⋅ sup(𝑌 ) | ∀𝑥 ∈ 𝑋∀𝑦 ∈ 𝑌 𝑥, 𝑦 ≥ 0 (two “large” negative elements can

make a larger supremum)

TODO: Review proof 2.59



1.0.10. Definition - Identity Function
This function simply outputs its input and is needed to define the inverse of a function:

id : 𝑋 → 𝑋
id(𝑥) ≔ 𝑥

1.0.11. Definition - Characteristic Function
𝑋 ⊆ 𝑌 , the characteristic / indicator function 𝜒𝑋 : 𝑌 → {0, 1} indicates whether an element is part
of a set:

𝜒𝑋(𝑥) ≔ {1 if 𝑥 ∈ 𝑋
0 otherwise

1.0.12. Definition - Restriction Function
A new function can be defined with a smaller domain, which is useful for drawing conclusions from
its properties over that domain:

𝑓 : 𝑋 → 𝑌 , 𝐴 ⊆ 𝑋
𝑓 |𝐴 : 𝐴 → 𝑌

2. Topology
2.0.1. Definition - Ball / Disk
A topological ball with radius 𝑟 and center 𝑥0 ∈ ℝ𝑑 in dimension ℝ𝑑 is defined as the set of points:

𝐵𝑑
𝑟 (𝑥0) = {𝑥 ∈ ℝ𝑑 | |𝑥 − 𝑥0| < 𝑟} − Open ball

𝐵𝑑
𝑟 (𝑥0) = {𝑥 ∈ ℝ𝑑 | |𝑥 − 𝑥0| ≤ 𝑟} − Closed ball

𝑆𝑑−1
𝑟 (𝑥0) = {𝑥 ∈ ℝ𝑑 | |𝑥 − 𝑥0| = 𝑟} − Sphere (boundary of ball)

Where |𝑥 − 𝑥0| is the length of the vector from 𝑥0 → 𝑥 ie the radius. This can also be defined using
complex numbers and the complex absolute function. It follows:

𝐵0(𝑥0) = ∅

𝐵0(𝑥0) = {𝑥0}

𝐵𝑑
∞(𝑥0) = 𝐵𝑑

∞(𝑥0) = ℝ𝑑

• Man muss immer am 𝐵𝑑
𝑟  bleiben!

The sphere has dimensions 𝑑 − 1 because its points only form a subspace in the dimension below
the ball which it is enclosing:
• 𝑆1

𝑟  - Is the line of points around a circle ie 1 dimensional
• 𝑆2

𝑟  - Every point in the surface of a 3D ball can be reached with linear combinations of two basis
vectors (such that they stay within the subspace).

2.0.2. Definition - Inner Point
A point 𝑥 ∈ 𝑆𝑛 is inner ⇔ ∃𝑟 ∈ (0, ∞) | 𝐵𝑛

𝑟 (𝑥) ⊆ 𝑆 - there is an open ball with a radius > 0
around 𝑥 such that it is entirely a subset of / equal to S.

2.0.3. Definition - Interior
- The interior of a set is the set of all its inner points:

Int 𝑆 ≔ {inner points of S}



• Int 𝑆 ⊂ 𝑆 is always true.
• Alternatively, the interior can be defined as the union of open balls:

Int 𝑆 ≔ ⋃
𝐵𝑛

𝑟 (𝑥) | 𝐵⊆𝑆
𝐵

2.0.4. Definition - Open Set
A set which is equal to its interior: 𝑆 = Int 𝑆. In other words, it is defined with > or < relations.
• It has no maximum / minimum, only an infimum / supremum.
• Every point of an open ball is an inner point, hence making the ball “open”.

Int 𝐵𝑑
𝑟 (𝑥0) = 𝐵𝑑

𝑟 (𝑥0)
𝑥 ∈ ℝ, {𝑥} is not open

• The union of arbitrarily many open sets is open (the outer boundaries will remain open no matter
what)

• The intersection of finitely many open sets is also open

2.0.5. Definition - Closed Set
The definition is built upon that of an open set: Let 𝐴 ⊆ ℝ𝑛:

𝐴 is closed ⇔ (ℝ𝑛 \ 𝐴) is open

For example, [𝑎, 𝑏] | 𝑎 < 𝑏 can instead be expressed as (−∞, 𝑎) ∪ (𝑏, ∞), which is open.
• {𝑥} is closed
• ∅, ℝ𝑛 are both open and closed, since ∅∁ = ℝ𝑛 and ℝ∁ = ∅
• [𝑎, 𝑏) ⊊ ℝ is neither open or closed

2.0.6. Definition - Closure
The closure of 𝑆 is the smallest possible closed set which entirely includes the set 𝑆, this can be
formed using the intersection of all possible closed balls with different radii and centers, as long as
they entirely contain 𝑆:

𝑆 ≔ clos(𝑆) ≔ ⋃
All 𝐵𝑛

𝑟 (𝑐) | 𝑆⊆𝐵

𝐵

For example:

𝑆 ≔ (0, 1]

𝑆 = [0, 1]

• 𝑆 ⊆ 𝑆 - The closure of a set contains the set itself
• A topological set can only be called closed if it is equal to its closure

2.0.7. Definition - Boundary
The boundary of a set 𝜕𝑆 is:

𝜕𝑆 ≔ 𝑆 \ Int 𝑆

Characterized more fundamentally:

𝜕𝑆 ≔ {𝑥 ∈ ℝ𝑛 | (∀𝑟 ∈ (0, ∞) | (𝐵𝑛
𝑟 (𝑥) ∩ 𝑆) ≠ ∅ ≠ 𝐵𝑛

𝑟 (𝑥) \ 𝑆)}

The boundary of a set S is the set of points such that:



• A ball with increasing radius (starting just above 0) always continues to overlap with some
elements of S ((𝐵𝑛

𝑟 (𝑥) ∩ 𝑆) ≠ ∅), ie the ball must be actually in or right next to S
• The points themselves are part of 𝐵𝑛

𝑟 (𝑥) \ 𝑆, which is never equal to the empty set, ie the point
itself is never in S

By definition, a topological sphere is the boundary of a ball:

𝜕𝐵𝑛
𝑟 (𝑥) = 𝜕𝐵𝑛

𝑟 (𝑥) = 𝑆𝑛−1
𝑟 (𝑥)

Furthermore, a boundary is a closed set:

(ℝ𝑛 \ 𝜕𝑆 = (Int 𝑆 ∪ ℝ𝑛 \ 𝑆)) which is open ⇒ 𝜕𝑆 is closed

2.0.8. Definition - Bounded
A set which is a subset of a closed set (other than ℝ𝑛). In other words, the set of bounds 𝐵 = {𝑏 ∈
ℝ𝑛 | ∀𝑥 ∈ 𝑋𝑥 ≤ (≥)𝑏} ≠ ∅.

2.0.9. Definition - Compact
A set which is closed and bounded
• A closed ball is by definition compact.
• ℝ𝑛 is not compact, because it is an infinitely large (albeit open & closed) set.

2.0.10. Definition - Neighborhood (Umgebung)
A subset 𝑈 ⊆ 𝑋 is considered a neighborhood of a point 𝑥0 relative to a set 𝑋 if:

𝑥0 ∈ 𝑂 ⊆ 𝑈 ⊆ 𝑋

Where 𝑂 is a non-empty open set.
• For example, there are many possible neighborhoods around a point in the middle of a non-empty

set.
• Points on the boundary of 𝑋 have no neighborhood 𝑈  as no non-empty open set contains only

points which remain in 𝑋

3. Axioms of The Real Numbers
An axiomatic approach to defining the set of real numbers ℝ.

3.0.1. Definition - Group
A non-empty set 𝐺 endowed with an operation ⋆ which satisfies the following criteria ∀𝑎, 𝑏, 𝑐 ∈
𝐺:
1. Associativity - 𝑎 ⋆ (𝑏 ⋆ 𝑐) = (𝑎 ⋆ 𝑏) ⋆ 𝑐
2. ∃ Neutral Element 𝑛 - 𝑎 ⋆ 𝑛 = 𝑛 ⋆ 𝑎 = 𝑎 - Examples:

• 𝑎 + 0 = 0 + 𝑎 = 𝑎
• 𝑎 ⋅ 1 = 1 ⋅ 𝑎 = 𝑎

3. ∀𝑎∃ Inverse Element 𝑖 - 𝑎 ⋆ 𝑖 = 𝑖 ⋆ 𝑎 = 𝑛 - Examples:
• 𝑎 + (−𝑎) = (−𝑎) + 𝑎 = 0
• 𝑎 ≠ 0 ⇒ 𝑎 ⋅ 𝑎−1 = 𝑎−1 ⋅ 𝑎 = 1

4. If 𝑎 ⋆ 𝑏 = 𝑏 ⋆ 𝑎 it is a commutative group, although this is not required.

Properties:
• The Neutral Element is unique. Proof:

Let 𝑛, 𝑛′ ∈ 𝐺 be neutral elements
𝑛 ⋆ 𝑛′ = 𝑛 = 𝑛′



• There is unique Inverse Element for all elements. Proof:

Let 𝑖, 𝑖′ ∈ 𝐺 be inverse elements for 𝑎
𝑖 ⋆ (𝑎 ⋆ 𝑖′) = (𝑖 ⋆ 𝑎) ⋆ 𝑖′

𝑖 ⋆ 𝑛 = 𝑛 ⋆ 𝑖′

𝑖 = 𝑖′

Examples:
• The non-zero rational numbers ℚ ≔ {𝑝

𝑞 | 𝑝, 𝑞 ∈ ℤ : 𝑝, 𝑞 ≠ 0} with operation ⋅ is a group, where
𝑛 = 1

1  and 𝑖(𝑝
𝑞) = 𝑞

𝑝
• The natural numbers ℕ with operation + is not a group, as there are no negative inverse elements

3.0.2. Definition - Ring
A non-empty set 𝑅 with operations + and ⋅.
1. Addition is always commutative with 𝑛 = 0, 𝑖 = −𝑎
2. Multiplication is not necessarily commutative, for example a matrix ring
3. If multiplication is commutative, it is a commutative ring and has neutral element 𝑛 = 1
4. It is not necessarily a group for multiplication as 0 may be included and has no inverse element

0 ⋅ 𝑖 ≠ 1

3.0.3. Definition - Field (Körper)
A commutative ring 𝐾 (Körper) where ∀𝑎 ∈ 𝐾 | 𝑘 ≠ 0 the inverse element for multiplication exists.
1. Addition: 𝑛 = 0, 𝑖 = −𝑎, −(−𝑎) = 𝑎
2. Multiplication: 𝑛 = 1, 𝑖 = 𝑎−1, (𝑎−1)−1 = 𝑎 | 𝑎 ≠ 0

Examples:
• ℤ is a ring but not a field as there is no multiplicative inverse element for all non-zero elements
• The complete set of rational numbers ℚ ≔ {𝑝

𝑞 | 𝑝, 𝑞 ∈ ℤ : 𝑞 ≠ 0} is a commutative ring and a
field.

• 0 ⋅ 𝑎 = 0. Proof:

0 = 0 ⋅ 𝑎 − 0 ⋅ 𝑎 = (0 − 0) ⋅ 𝑎 = 0 ⋅ 𝑎

3.0.4. Definition - Relationship
A relationship on 𝑋 is the subset ℜ ≔ {(𝑎, 𝑏) ∈ 𝑋 × 𝑋 | 𝑎 ∼ 𝑏} where ∼ is an operator for
expressing conditions called a relation and may have the following properties if the corresponding
condition holds true ∀𝑥, 𝑦, 𝑧 ∈ 𝑋:
• Reflexive - 𝑥 ∼ 𝑥 - Example: ≤
• Transitive - 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ⇒ 𝑥 ∼ 𝑧 - Example: <
• Symmetric - 𝑥 ∼ 𝑦 ⇒ 𝑦 ∼ 𝑥 - Example: =, ≠
• Anti-Symmetric - 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑥 ⇒ 𝑥 = 𝑦 - Example: ≤ - Although such relations are often

reflexive too, this is not a requirement, consider <, which is anti-symmetric (no such 𝑥, 𝑦 exist)
but not reflexive.

• A relation is called equivalence relation if it is reflexive, transitive and symmetric. For example
= is an equivalence relation, ≤ is not (not symmetric).

• A relation is called order relation if it is reflexive, transitive and anti-symmetric. For example ≤

3.0.5. Definition - Ordered Field
This extends the definition of a field 𝐾 with the relation ≤, which is denoted as (𝐾, ≤), under
which all elements 𝑥, 𝑦, 𝑧 ∈ 𝐾 satisfy the following:
1. Linearity of the order:



𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥
2. Compatibility of order and addition:

𝑥 ≤ 𝑦 ⇒ 𝑥 + 𝑧 ≤ 𝑦 + 𝑧
3. Compatibility of order and multiplication:

0 ≤ 𝑥 ∧ 0 ≤ 𝑦 ⇒ 0 ≤ 𝑥 ⋅ 𝑦

This can be combined with the Inverse Element of addition (which exists in all fields) to make
statements about multiplication of negative numbers.

Axioms 2 and 3 also apply to the relation <, which significantly simplifies proofs. Proof: https://
math.stackexchange.com/a/3271338
These conditions allow us to define conventions such as:
• Positive ≔ 𝑥 > 0
• Non-negative ≔ 𝑥 ≥ 0
• (𝑥 ≤ 𝑦 = 𝑧) ≡ (𝑥 ≤ 𝑦 ∧ 𝑦 = 𝑧)
• An example of an ordered field is the set of rational numbers ℚ.
• An example of a non-ordered field is the set of complex numbers ℂ

The conditions of an ordered field lead to many properties we take as given. Here are some
interesting proofs:
• (𝑥 < 𝑦 ∧ 𝑦 ≤ 𝑧) ⇒ 𝑥 < 𝑧 - Proof:

𝑥 < 𝑦 ⇒ 𝑥 ≤ 𝑦. ≤ is a transitive relation, hence 𝑥 ≤ 𝑧
We must now show that 𝑥 < 𝑧.

Assume by contradiction that ¬(𝑥 < 𝑧) ≡ 𝑥 ≥ 𝑧 holds true
Due to 𝑥 ≤ 𝑧 ∧ 𝑥 ≥ 𝑧, 𝑥 = 𝑧

Recalling 𝑥 < 𝑦 this implies 𝑧 < 𝑦 which contradicts 𝑦 ≤ 𝑧
∴ 𝑥 < 𝑧∎

• If 𝑥 ≠ 0, 𝑥2 > 0 holds true. Proof:
As 𝑥 ≠ 0 there are 2 cases:
‣ 𝑥 > 0
‣ 𝑥 < 0

The ring is only guaranteed to be valid for the relation ≤, so we will prove 𝑥2 ≥ 0 first.
If 𝑥 > 0, 𝑥 ≥ 0 also holds true and also 𝑥2 ≥ 0 per condition 3.
If 𝑥 < 0, 𝑥 ≤ 0 also holds true. Applying condition 2, (𝑥 − 𝑥 ≤ 0 − 𝑥) ≡ (0 ≤ −𝑥). Applying
condition 3, −𝑥 ⋅ −𝑥 = 𝑥2 ≥ 0.
Lastly, we must show that 𝑥2 ≥ 0 ⇒ 𝑥2 > 0. Assume by contradiction that ∃𝑥 ≠ 0 : 𝑥2 ≤ 0 ⇒
𝑥2 < 0. This contradicts 𝑥2 ≥ 0, which we have proven for all 𝑥 ≠ 0 in the field. Hence 𝑥2 > 0
must also be true ∎

• 0 < 1. Proof:
Lemma: 0 ≠ 1 (Neutral Elements of addition and multiplication are not the same)
Lemma: If 𝑥 ≠ 0, 𝑥2 > 0 holds true. Therefore 12 = 1 > 0 ∎

Based on the fact that 0 < 1 and the compatibility + inverse element of addition, it is clear that the
integers ℤ ≔ …, < −1 < 0 < 1 < … are a subset of any ordered field. Furthermore, the rational
numbers are defined from the set of integers, which are also a subset of all ordered fields 𝐾:

ℤ ⊊ ℚ ⊆ 𝐾

https://math.stackexchange.com/a/3271338
https://math.stackexchange.com/a/3271338


3.0.6. Definition - Absolute Function
A function |𝑥| : 𝐾 → 𝐾+ defined on every ordered field such that:

|𝑥| ≔ {𝑥 if 𝑥 ≥ 0
−𝑥 if 𝑥 < 0

• (|𝑥| ≤ 𝑦) ≡ (−𝑦 ≤ 𝑥 ≤ 𝑦)
• |𝑥𝑦| ≡ |𝑥||𝑦|

3.0.7. Definition - Sign Function
A function |𝑥| : 𝐾 → {−1, 0, 1} defined on every ordered field such that:

sgn(𝑥) ≔
{{
{
{{1 if 𝑥 > 0

0 if 𝑥 = 0
−1 if 𝑥 < 0

• Every 𝑥 ∈ 𝐾 can be expressed as 𝑥 = sgn(𝑥) ⋅ |𝑥|

3.0.8. Theorem - Triangle Inequality
It holds ∀𝑥, 𝑦 ∈ 𝐾 elements of an ordered field that:

|𝑥 + 𝑦| ≤ |𝑥| + |𝑦|

The name stems from considering a triangle spanned by two vectors. It is clear that the length of
their vector sum is ≤ the sum of both side lengths. Proof (on an ordered field):
Lemma: |𝑥| ⇒ −|𝑥| ≤ 𝑥 ≤ |𝑥|
Therefore we can state the following:

−|𝑥| ≤ 𝑥 ≤ |𝑥|
−|𝑦| ≤ 𝑦 ≤ |𝑦|

Lemma: 𝑥 ≤ 𝑦 ⇒ 𝑥 + 𝑧 ≤ 𝑦 + 𝑧:

−|𝑥| + −|𝑦| ≤ 𝑥 + −|𝑦|
−|𝑦| + 𝑥 ≤ 𝑦 + 𝑥

Lemma: 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ⇒ 𝑥 ≤ 𝑧

∴ −(|𝑥| + |𝑦|) ≤ 𝑥 + 𝑦

Applying the same procedure to 𝑥 ≤ |𝑥| and 𝑦 ≤ |𝑦| we get:

−(|𝑥| + |𝑦|) ≤ 𝑥 + 𝑦 ≤ |𝑥| + |𝑦|

Lemma: (|𝑥| ≤ 𝑦) ≡ (−𝑦 ≤ 𝑥 ≤ 𝑦)

∴ |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|∎

An alternative, the inverse triangle inequality can also be useful:

|𝑥 − 𝑦| ≥ ||𝑥| − |𝑦||

3.0.9. Definition - Completeness Axiom
The definition of an ordered field so far is unsuitable as we need to “fill in the gaps”. The
completeness axiom is an alternative but equivalent approach to Dedekind cuts (which define the



cuts first and then operations in terms of cuts) which defines a complete ordered field if the
completeness axiom holds true:
1. Let 𝑋, 𝑌 ⊊ 𝐾 | 𝑋, 𝑌 ≠ ∅ : ∀𝑥 ∈ 𝑋∀𝑦 ∈ 𝑌  the inequality 𝑥 ≤ 𝑦 holds true. If there exists 𝑐 ∈

𝐾 | 𝑥 ≤ 𝑐 ≤ 𝑦 for all such subsets 𝑋 and 𝑌 , the ordered field is complete.

• The field of real numbers ℝ is a completely ordered field
• The reason subsets are checked instead of individual elements 𝑥, 𝑦 is because subsets can be

defined in terms of inequalities. For example, consider checking the existence of 
√

2 in ℚ. The set
of rational numbers is dense, therefore no matter which lower bound 𝑥 we choose, there is
always a rational number closer to 

√
2 and therefore the check 𝑥 ≤ 𝑐 ≤ 𝑦 holds true (although√

2 is not a member of ℚ). On the other hand if we choose the subset 𝑋 = {𝑥 ∈ ℚ | 𝑥 ≤
√

2},
this contains the true infimum of 

√
2 and checks completeness rather than density. Of course,

both approaches would involve checking infinitely many elements but luckily we can arrive at
such an inequality from the axioms of an ordered set.

3.0.10. Definition - Compactification
The reals can be extended to be compact (closed an bounded) with −∞, ∞ for certain purposes,
such as defining the supremum / infimum of an unbounded / empty set:

𝑅 = ℝ ∪ {−∞, ∞}
∀𝑥 ∈ ℝ, −∞ < 𝑥 < ∞

Certain conventions are defined, however these are ambiguous and should be used sparingly:

∞ + 𝑥 = ∞
−∞ + 𝑥 = −∞

𝑥 ⋅ ∞ = ∞ | 𝑥 > 0
sup(∅) = −∞
inf(∅) = ∞

3.0.11. Definition - Archimedean Principle
For every 𝑥 ∈ ℝ there exists exactly one 𝑛 ∈ ℤ | 𝑛 ≤ 𝑥 < 𝑛 + 1. In simpler words, ∀𝑥 ∈ ℝ∃𝑧 ∈
ℤ | 𝑧 > 𝑥

3.0.12. Definition - Integer / Fractional Part
The integer part of any 𝑟 ∈ ℝ is given by the floor function ⌊⋅⌋ : ℝ → ℤ which returns the lower 𝑛
which exists due to the Archimedean principle.
The fractional part is given by 𝑟 − ⌊𝑟⌋ ∈ [0, 1)

3.0.13. Corollary - 1
𝑛  is arbitrarily small

∀𝜀 ∈ ℝ | 𝜀 > 0∃𝑛 ∈ ℤ | 𝑛 ≥ 1 ∧ 1
𝑛 < 𝜀.

Proof:
If 𝜀 > 1 this holds true with 𝑛 = 1.
For 𝜀 ≤ 1, 1𝜀 ≥ 1. The Archimedian principle states that there always exists a 𝑛 ≥ 1| 𝑛 > 1

𝜀 , which
becomes 1

𝑛 < 𝜀∎

3.0.14. Definition - Cardinality
The cardinality of two sets describes their relative “sizes”.
• 𝑋 ∼ 𝑌  - We say two sets 𝑋 and 𝑌  have the same cardinality (the same number of elements) if

there exists a bijective mapping 𝑓 : 𝑋 → 𝑌 . Surjectivity guarantees that |𝑌 | ≥ |𝑋| and
injectivity guarantees |𝑋| ≥ |𝑌 |, which leads to|𝑋| = |𝑌 | (trichotomy).



• 𝑋 <
∼

𝑌  - 𝑋 is smaller than or equal to 𝑌  if there exists an injective mapping 𝑓 : 𝑋 → 𝑌
• 𝑋 <

∼
𝑌 ∧ 𝑌 <

∼
𝑋 => 𝑋 ∼ 𝑌  - One can find a bijective mapping (Schröder-Bernstein Theorem)

• |∅| = 0
• ∃𝑓 : 𝑋 → {1, 2, …, 𝑛} is bijective ⇒ |𝑋| = 𝑛, 𝑋 is finite
• |ℕ| = ℵ0 - A set which has the same cardinality as ℕ is called countable

3.0.15. Theorem - Cantor’s Theorem
The power set 𝒫(𝑋) of any (infinite too) non-empty set 𝑋 is larger than and not equal to 𝑋.
This reveals that 𝒫(ℕ) > ℕ ∧ 𝒫(ℕ) ≠ ℕ which is useful for showing that other sets are larger than
or equal to 𝒫(ℕ) (∃ injection) and therefore also uncountable.
Proof:
Although this may seem obvious, when dealing with infinity it is easier to write a formal proof than
find logical reasoning behind the intuition.
First we must show that there is an injective mapping 𝑖 : 𝑋 → 𝒫(𝑋), which indeed exists: 𝑥 ∈ 𝑋 →
{𝑥}.
Now we show that there is no surjective mapping. Assume by contradiction that such a mapping 𝑠 :
𝑋 → 𝒫(𝑋) exists.
We will demonstrate its absurdity by defining the subset:

𝐵 = {𝑥 ∈ 𝑋 | 𝑥 ∉ 𝑓(𝑥)} ⊆ 𝑋

For every 𝑥 ∈ 𝑋 there are two cases:
1. 𝑥 ∈ 𝑠(𝑥), therefore 𝑥 ∉ 𝐵 and 𝑠(𝑥) ≠ 𝐵 because 𝑥 would need to be a member of 𝐵 for them to

be equal
2. 𝑥 ∉ 𝑠(𝑥), therefore 𝑥 ∈ 𝐵 and 𝑠(𝑥) ≠ 𝐵 because 𝑥 would need to be a member of 𝑠(𝑥) for them

to be equal

We have shown that ∄𝑥 ∈ 𝑋 | 𝑠(𝑥) = 𝐵 and because 𝐵 ∈ 𝒫(𝑋), there exists no surjective mapping
𝑠 : 𝑋 → 𝒫(𝑋)∎

3.0.16. Theorem - ℝ is Uncountable
To prove this, we can find an injection 𝑖 : 𝒫(ℕ) → ℝ, which is given from the decimal expansion of
reals TODO: Understand Cantor diagonalization

4. Sequences of Real Numbers
4.0.1. Definition - Sequence
A sequence is a function 𝑎 : ℕ → ℝ which is often written as (𝑎𝑛)𝑛∈ℕ
• A sequence is called constant if ∀𝑛, 𝑚 ∈ ℕ, 𝑎𝑛 = 𝑎𝑚 and eventually constant if ∃𝑁 ∈

ℕ | ∀𝑛, 𝑚 ≥ 𝑁, 𝑎𝑛 = 𝑎𝑚

4.0.2. Definition - Convergence
A sequence is said to converge towards 𝐴 if:

∃𝐴 ∈ ℝ∀𝜀 ∈ (0, ∞)∃𝑁 ∈ ℕ | ∀𝑛 ∈ ℕ : 𝑛 ≥ 𝑁, |𝑎𝑛 − 𝐴| < 𝜀
lim

𝑛→∞
𝑎𝑛 = 𝐴

• Divergence can be proved by proving the conjugate:

∀𝐴 ∈ ℝ∃𝜀 ∈ (0, ∞)∀𝑁 ∈ ℕ0∃𝑛 ∈ 𝑁 : 𝑛 ≥ 𝑁, |𝑁 − 𝐴| > 𝜀



• A convergent sequence has only one limit. Proof:
Let 𝐴1, 𝐴2 ∈ ℝ be two limits of the sequence 𝑎𝑛.
Due to the convergence criteria:

∃𝑁1, 𝑁2 ∈ ℕ | ∀𝑛 ≥ max(𝑁1, 𝑁2), |𝑎𝑛 − 𝐴1| < 𝜀 ∧ |𝑎𝑛 − 𝐴2| < 𝜀, ∀𝜀 ∈ (0, ∞)
0 < 𝜀 − |𝑎𝑛 − 𝐴1|, 0 < 𝜀 − |𝑎𝑛 − 𝐴2|

∴ |𝑎𝑛 − 𝐴1| + |𝑎𝑛 − 𝐴2| < 2𝜀

Applying the Lemma |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|:

𝑎𝑛 − 𝐴1 − (𝑎𝑛 − 𝐴2) = 𝐴2 − 𝐴1

0 ≤ |𝐴2 + (−𝐴1)| ≤ |𝑎𝑛 − 𝐴1| + |−(𝑎𝑛 − 𝐴2)| < 2𝜀

Since |−𝑥| = |𝑥| ≥ 0, and this is true ∀𝜀 > 0:

|𝐴2 − 𝐴1| = 0 = 𝐴2 − 𝐴1

𝐴2 = 𝐴1∎
• The sequence 𝑎𝑛 = 1

𝑛  converges to 0, because ∀𝜀 > 0, ∃𝑛 ∈ ℤ | 1
𝑛 < 𝜀, satisfying the criteria of

convergence | 1
𝑛 − 0| < 𝜀

4.0.3. Definition - Subsequence
A subsequence of 𝑎𝑛 is any sequence obtained by keeping certain elements 𝑎𝑛𝑖

 indexed by
𝑖𝑘𝑘∈ℕ

| ∀𝑘 ∈ ℕ, 𝑖𝑘+1 > 𝑖𝑘
• It follows that 𝑖𝑘 ≥ 𝑘 (proof by induction invoking the property of natural numbers 𝑥 > 𝑦 ⇒ 𝑥 ≥

𝑦 + 1
• A sequence can have convergent subsequences without itself converging, for example 𝑎𝑛 =

(−1)𝑛 does not converge but the subsequences 𝑎2𝑛, 𝑎2𝑛+1 are constant and convergent

4.0.4. Lemma - Subsequences of a Convergent Sequence are Convergent to the Same Limit
Proof:
Let 𝑎𝑛𝑖

 (indexed by 𝑖𝑘𝑘∈ℕ
) be a subsequence of 𝑎𝑛, which converges to 𝐴 ∈ ℝ, ie ∃𝑁 ∈ ℕ | ∀𝑛 >

𝑁, |𝑎𝑛 − 𝐴| < 𝜀.
𝑖𝑘 ≥ 𝑘 ⇒ 𝑗 ≥ 𝑛 is a term of 𝑖𝑘, which satisfies the convergence condition for the same 𝐴, along
with all subsequent elements.

4.0.5. Definition - Accumulation Point
A point 𝐴 ∈ ℝ is called an accumulation point of a sequence 𝑎𝑛 if:

∀𝜀 > 0∀𝑁 ∈ ℕ∃𝑛 ∈ ℕ | 𝑛 ≥ 𝑁 ∧ |𝑎𝑛 − 𝐴| < 𝜀

This no longer requires that every 𝑛 ≥ 𝑁  is close to 𝐴, just that such an 𝑛 can be chosen for every
minimum 𝑁  (which is a similar notion to choosing the terms that make up a converging
subsequence). For example, both 1 and −1 are accumulation points of 𝑎𝑛 = (−1)𝑛 but not limits.
The following corollaries apply:
• 𝐴 is an accumulation point of a sequence 𝑎𝑛 ⇔ There exists a subsequence of 𝑎𝑛 which converges

towards 𝐴
• ∀𝜀 > 0 there are infinitely many elements of the sequence 𝑎𝑛 near an accumulation point (𝐴 −

𝜀, 𝐴 + 𝜀). This follows from the fact that there is a subsequence that converges to 𝐴 and all
elements of the subsequence after 𝑁  are both close to 𝐴 and elements of the parent sequence.



• A convergent sequence’s limit is its unique accumulation point. The Lemma states: “All
subsequences of a convergent sequence are convergent to the same limit” and applying the first
corollary proves that they all correspond to the same accumulation point.

4.0.6. Definition - Ring of Sequences
Sequences ∈ ℝ form a commutative ring together with point wise addition and multiplication and
the constant sequences 0𝑛 and 1𝑛 as neutral elements:

𝑎𝑛 + 𝑏𝑛 = (𝑎 + 𝑏)𝑛

𝑎𝑛 ⋅ 𝑏𝑛 = (𝑎 ⋅ 𝑏)𝑛

𝛼 ⋅ 𝑏𝑛 = (𝛼 ⋅ 𝑏)𝑛

• They do not form a field under pointwise multiplication, as a non-zero sequence may still contain
0 ∈ ℝ in it, which under real multiplication has no inverse 0 ⋅ 𝑖 ≠ 1.

4.0.7. Theorem - Operations on Limits
Operations on the sequence 𝑥𝑛 which converges to 𝑋 and 𝑦𝑛 which converges to 𝑌  have the
following effects on their limits:
1. (𝑥𝑛 + 𝑦𝑛)𝑛 → 𝑋 + 𝑌  Proof:

We can say the following about these sequences:

∀𝜀 > 0∃𝑛 ∈ ℕ | 𝑛 ≥ max(𝑁𝑥, 𝑁𝑦) ∧ |𝑥𝑛 − 𝑋| < 𝜀 ∧ |𝑦𝑛 − 𝑌 | < 𝜀

To show that (𝑥𝑛 + 𝑦𝑛)𝑛 converges to 𝑋 + 𝑌 , we need to show |(𝑥𝑛 + 𝑦𝑛) − (𝑋 + 𝑌 )| < 𝜀 for
increasing 𝑛. Due to 0 ≤ |𝑥| and the compatibility of addition in the ordered field ℝ, we can add
these inequalities:

|𝑥𝑛 − 𝑋| + |𝑦𝑛 − 𝑌 | < 2𝜀

Applying the triangle inequality:

|𝑥𝑛 − 𝑋 + 𝑦𝑛 − 𝑌 | = |(𝑥𝑛 + 𝑦𝑛) − (𝑋 + 𝑌 )| < 2𝜀∎

Similar proofs for 2, 3 and 4
2. (𝑥𝑛 ⋅ 𝑦𝑛)𝑛 → 𝑋 ⋅ 𝑌
3. ∀𝛼 ∈ ℝ, 𝛼 ⋅ 𝑥𝑛 → 𝛼𝑋
4. ∀𝑛 ∈ ℕ, 𝑥𝑛 ≠ 0 ∧ 𝑋 ≠ 0 ⇒ (𝑥−1)

𝑛
→ 𝑋−1

Furthermore:
1. 𝑋 < 𝑌 ⇒ ∃𝑁 ∈ ℕ | ∀𝑛 > 𝑁, 𝑥𝑛 < 𝑦𝑛

Proof:
Since both sequences converge, there exists:

∃𝑁 | ∀𝜀 > 0, ∀𝑛 > 𝑁, |𝑥𝑛 − 𝑋| < 𝜀 ∧ |𝑦𝑛 − 𝑌 | < 𝜀

We want to consider the case of 𝑋 < 𝑌  and look for terms that “surround” this inequality. These
inequalities can be rewritten as:



−𝜀 + 𝑋 < 𝑥𝑛 < 𝜀 + 𝑋
−𝜀 + 𝑌 < 𝑦𝑛 < 𝜀 + 𝑌

𝑥𝑛 − 𝜀 < 𝑋
𝑦𝑛 + 𝜀 > 𝑌

𝑥𝑛 − 𝜀 < 𝑋 < 𝑌 < 𝑦𝑛 + 𝜀
𝑥𝑛 − 𝜀 < 𝑦𝑛 + 𝜀

Since 𝜀 can be chosen to tend towards 0, 𝑥𝑛 < 𝑦𝑛∀𝑛 > 𝑁∎
2. (∃𝑁 ∈ ℕ | ∀𝑛 > 𝑁, 𝑥𝑛 < 𝑦𝑛) ⇒ 𝑋 ≤ 𝑌 . This can be proved by contradiction using the

previous Lemma. We cannot say 𝑋 < 𝑌 , for example the two sequences 𝑥𝑛 = − 1
𝑛 , 𝑦𝑛 = 1

𝑛
approach their limit 0 from different sides.

These can be very useful to calculate the limits of complicated expressions, for example:

lim
𝑛→∞

7𝑛4 + 15
3𝑛4 + 𝑛3 + 𝑛 − 1

= lim
𝑛→∞

7 + 15𝑛−4

3 + 𝑛3𝑛−4 + 𝑛𝑛−4 − 1𝑛−4 = lim
𝑛→∞

7 + 15𝑛−4

3 + 𝑛−1 + 𝑛−3 − 𝑛−4

𝑥 ≥ 1, lim
𝑛→∞

𝑛−𝑥 = 0

∴ 7
3

Care must be taken to not divide by 0 or ∞ when simplifying such limits.

4.0.8. Lemma - Sandwich Lemma
Consider 3 sequences, such that ∃𝑁 ∈ ℕ | ∀𝑛 > 𝑁 | 𝑥𝑛 ≤ 𝑦𝑛 ≤ 𝑧𝑛. If 𝑥𝑛 and 𝑧𝑛 converge to the
same limit, the sequence 𝑦𝑛 also converges to the same limit. The proof follows from the previous
Lemma (∃𝑁 ∈ ℕ | ∀𝑛 > 𝑁, 𝑥𝑛 < 𝑦𝑛) ⇒ 𝑋 ≤ 𝑌  applied for both 𝑥𝑛 and 𝑧𝑛 and the principle of
trichotomy.

4.0.9. Definition - Bounded Sequence
A sequence is bounded if ∃𝑀 ∈ ℝ | 𝑀 ≥ 0, |𝑥𝑛| ≤ 𝑀∀𝑛 ∈ ℕ. This is different from a limit as the
sequence may oscillate between negative and positive.
A sequence is unbounded if ∀𝑀 ∈ ℝ | 𝑀 ≥ 0, ∃𝑛 ∈ ℕ | |𝑥𝑛| ≥ 𝑀
• Every convergent sequence is bounded (but not every bounded sequence is convergent). Proof:

The bound 𝑀  is max(|𝐴|, |𝑥1|, |𝑥2|, …, |𝑥𝑁−1|), where 𝑁  is finite.
• Bounded sequences have at least 1 accumulation point / a convergent subsequence.

4.0.10. Definition - Monotone Sequence
A sequence 𝑥𝑛 is called (strictly) monotonically increasing / decreasing if:

(∀𝑚, 𝑛 ∈ ℕ | 𝑚 > 𝑛) ⇒ 𝑥𝑚 ≥ (>)𝑥𝑛

(∀𝑚, 𝑛 ∈ ℕ | 𝑚 > 𝑛) ⇒ 𝑥𝑚 ≤ (<)𝑥𝑛

• Consider a monotone sequence. It is bounded ⇔ it converges, such that:

Montonically increasing: lim
𝑛→∞

𝑥𝑛 = sup{𝑥𝑛 | 𝑛 ∈ ℕ}

Montonically decreasing: lim
𝑛→∞

𝑥𝑛 = inf{𝑥𝑛 | 𝑛 ∈ ℕ}

Proof:
I state the following facts:



Monotonically increasing: (∀𝑚, 𝑛 ∈ ℕ | 𝑚 > 𝑛) ⇒ 𝑥𝑚 ≥ 𝑥𝑛

Bounded: ∃𝑀 ∈ ℝ | 𝑀 ≥ 0, ∀𝑏 ∈ ℕ, |𝑥𝑏| ≤ 𝑀, −𝑀 ≤ 𝑥𝑏 ≤ 𝑀
Supremum: min{𝑏 ∈ ℝ | ∀𝑥 ∈ 𝑋, 𝑥 ≤ 𝑏}

I aim to show convergence by combining these definitions towards: ∃𝐴 ∈ ℝ∀𝜀 ∈ (0, ∞)∃𝑁 ∈
ℕ | ∀𝑛 ∈ ℕ : 𝑛 ≥ 𝑁, |𝑎𝑛 − 𝐴| < 𝜀.
The existence of a bound 𝑀  shows that the bound set is not empty and a supremum “on the
sequence” exists (although it may be smaller to 𝑀 ). Let 𝐴 ∈ ℝ be such a supremum:

∀𝑥𝑛, −𝐴 ≤ 𝑥𝑛 ≤ 𝐴
∴ 𝑥𝑛 − 𝐴 ≤ 0

Since 𝜀 > 0, we can rearrange this to:

𝑥𝑛 − 𝐴 < 𝜀

We now wish to show −𝜀 < 𝑥𝑛 − 𝐴. It is given 𝑥𝑛 ≥ 𝑥𝑛−1. Furthermore, 𝑥𝑛−1 also respects the
bound 𝐴. Hence:

−𝐴 ≤ 𝑥𝑛−1 ≤ 𝑥𝑛

TODO: This proof is taking too long :( but I think I am almost there. Hoping to apply the definition
of the absolute function, |𝑥𝑛 − 𝐴| < 𝜀. I also need to show that there is an 𝑁  after which this is
valid, will try again another time…

4.0.11. Definition - Superior / Inferior Limits
These can be thought of as the steady-state bounds of a sequence. Consider the sequence 𝑠𝑛 =
sup{𝑥𝑘 | 𝑘 ≥ 𝑛} based on the sequence 𝑥𝑛. As the starting term to be included 𝑛 gets larger, the
supremum can only stay the same or get smaller (monotonically decreasing) because 𝑚 >
𝑛, {𝑥𝑘 | 𝑘 ≥ 𝑚} ⊊ {𝑥𝑘 | 𝑘 ≥ 𝑛}, ie. the starting terms get excluded and ∴ 𝑠𝑚 ≤ 𝑠𝑛. If the
sequence 𝑥𝑛 is bounded, 𝑠𝑛 is also bounded as the first (and subsequent) suprema are a real, non-
infinite number. Therefore, 𝑠𝑛 converges to inf{𝑠𝑛 | 𝑛 ∈ ℕ} and vice versa for the inferior limit 𝑖𝑛,
such that:

∀𝑛 ∈ ℕ, 𝑖𝑛 ≤ 𝑥𝑛 ≤ 𝑠𝑛

(lim sup)𝑛→∞𝑥𝑛 = lim
𝑛→∞

(sup{𝑥𝑘 | 𝑘 ≥ 𝑛}) = inf{sup{𝑥𝑘 | 𝑘 ≥ 𝑛} | 𝑛 ∈ ℕ}

(lim inf)𝑛→∞𝑥𝑛 = lim
𝑛→∞

(inf{𝑥𝑘 | 𝑘 ≥ 𝑛}) = sup{inf{𝑥𝑘 | 𝑘 ≥ 𝑛} | 𝑛 ∈ ℕ}

(lim inf)𝑛→∞𝑥𝑛 ≤ (lim sup)𝑛→∞𝑥𝑛



• The superior and inferior limits of all bounded sequences are accumulation points, and therefore
have convergent subsequences:

𝐴 = Set of accumulation points
(lim sup)𝑛→∞𝑥𝑛 = max(𝐴)
(lim inf)𝑛→∞𝑥𝑛 = inf(𝐴)

4.0.12. Theorem - Squeeze Theorem
This is known as the squeeze theorem as the bounds squeeze towards the limit from either side
and is an alternative criteria for convergence:

A sequence converges ⇔ (lim inf)𝑛→∞𝑥𝑛 = (lim sup)𝑛→∞𝑥𝑛

Proof:
Let 𝑠𝑛 = sup{𝑥𝑘 | 𝑘 ≥ 𝑛}, 𝑖𝑛 = inf{𝑥𝑘 | 𝑘 ≥ 𝑛}, we know that ∀𝑛 ∈ ℕ, 𝑖𝑛 ≤ 𝑥𝑛 ≤ 𝑠𝑛.
It is given that 𝑠𝑛 and 𝑖𝑛 converge to the same limit, therefore 𝑥𝑛 also converges to this limit
(sandwich lemma).
To show convergence ⇒ lim sup = lim inf, as 𝑛 → ∞, the minimum index for convergence 𝑁  will
have been reached and:

∀𝑛 > 𝑁∀𝜀 ∈ ℝ | 𝜀 > 0, −𝜀 < 𝑥𝑛 − 𝐴 < 𝜀
𝐴 − 𝜀 < 𝑥𝑛 < 𝐴 + 𝜀

𝐴 − 𝜀 < 𝑖𝑛 ≤ 𝑠𝑛 < 𝐴 + 𝜀

This can be rearranged to convergence criteria for 𝑠𝑛 and 𝑖𝑛, showing that their limits are equal:

∀𝜀 > 0, 𝐴 − 𝜀 < 𝑖𝑛 < 𝐴 + 𝜀 ⇒ |𝑖𝑛 − 𝐴| < 𝜀
|𝑠𝑛 − 𝐴| < 𝜀∎

4.0.13. Definition - Cauchy Sequence
A sequence is a Cauchy Sequence if:

∀𝜀 > 0∃𝑁 ∈ ℕ | ∀𝑛, 𝑚 > 𝑁, |𝑥𝑛 − 𝑥𝑚| < 𝜀

Important: It is only a Cauchy sequence if |𝑥𝑛 − 𝑥𝑚| < 𝜀 for all 𝑛, 𝑚 > 𝑁 . For example, the
sequence 1, 1 + 1

2 , 2, 2 + 1
3 , 2 + 2

3 , 3, … satisfies |𝑥𝑛 − 𝑥𝑛−1| < 𝜀∀𝑛 > 𝑁 , but it is not a Cauchy
sequence and is unbounded.
• They are bounded
• A sequence converges ⇔ it is a Cauchy sequence.

Proof:
Let 𝑥𝑛 be a sequence converging to 𝐴:

∀𝜀 > 0∃𝑁 ∈ ℕ | ∀𝑛 > 𝑁, |𝑥𝑛 − 𝐴| < 𝜀
𝑚 > 𝑁 ⇒ |𝑥𝑚 − 𝐴| < 𝜀

|𝑥𝑛 − 𝐴| + −|𝑥𝑚 − 𝐴| < 𝜀

Applying the triangle inequality:

|𝑥𝑛 − 𝑥𝑚| < 𝜀

Since 𝜀 is arbitrary, this shows that it is a Cauchy sequence. Now we must show that this implies
that it converges, let 𝑥𝑛 be a Cauchy sequence. Because it is bounded, there exists a subsequence



𝑥𝑛𝑘
 which converges to the bound 𝐴 as 𝑛 → ∞. Elements of this subsequence are also elements of

𝑥𝑛 and can be included in the Cauchy inequality as 𝑛 → ∞:

|𝑥𝑛 − 𝑥𝑛𝑘
| < 𝜀

|𝑥𝑛𝑘
− 𝐴| < 𝜀

|𝑥𝑛 − 𝐴| ≤ |𝑥𝑛 − 𝑥𝑛𝑘
| + |𝑥𝑛𝑘

− 𝐴| < 2𝜀

Therefore the entire sequence converges to 𝐴∎

4.0.14. Definition - Divergence
We say that a sequence 𝑥𝑛 diverges to ∞ (−∞) if:

∀𝑀 ∈ ℝ | 𝑀 > (<)0, ∃𝑁 ∈ ℕ | ∀𝑛 > 𝑁, 𝑥𝑛 > (<)𝑀
lim

𝑛→∞
𝑥𝑛 = ∞(−∞)

The limits ∞ and −∞ are called improper.
• An unbounded sequence doesn’t necessarily diverge to ∞, for example (−1)𝑛𝑛 oscillates.
• An unbounded sequence always has a subsequence which diverges to ∞ or −∞.

Proof:
The definition of an unbounded sequence is very similar to that of divergence to ∞ or −∞:

∀𝑀 ∈ ℝ | 𝑀 ≥ 0, ∃𝑘 ∈ ℕ | |𝑥𝑘| ≥ 𝑀
𝑥𝑘 > 𝑀 ∨ 𝑥𝑘 < −𝑀

We now need to show that there are infinitely many such elements with index greater than 𝑘.
Assume by contradiction that ∄𝑖 > 𝑘 | 𝑥𝑖 > 𝑀 ∨ 𝑥𝑘 < −𝑀 . This violates the criteria for an
unbounded sequence, as it implies there are finitely (ℕ is not dense) many elements 𝑥𝑘 > 𝑀  but
this is required for infinitely many 𝑀 > 0.
This contradicts the assumption and shows:

∀𝑀 ∈ ℝ | 𝑀 > (<)0, ∃𝑁 ∈ ℕ | ∀𝑛 > 𝑁, 𝑥𝑛𝑘
> (<)𝑀∎

• The superior / inferior limits of an unbounded sequence are the improper limits ∞ or −∞
depending on if it has an upper or lower bound.

4.0.15. Definition - Complex Sequences
We can study the limits of the real and imaginary parts of a complex number individually. A
sequence 𝑧𝑛 converges to 𝐴 + 𝐵𝑖 if Re(𝑧𝑛) → 𝐴, Im(𝑧𝑛) → 𝐵. Since complex numbers are not
ordered, we check divergence using the absolute function |𝑧𝑛| → ∞.

5. Complex Numbers
5.0.1. Definition - Complex Numbers
The set of complex numbers ℂ is defined from the Cartesian coordinates, where the + can be
thought of as a substitute for the comma in a tuple, and 𝑖 is called the complex unit:

𝑧 = 𝑎 + 𝑏𝑖 ∈ ℂ ≔ ℝ2 = {(𝑎, 𝑏) | 𝑎, 𝑏 ∈ ℝ}
𝑎 = Re(𝑧)
𝑏 = Im(𝑧)



Complex addition +ℂ and multiplication ⋅ℂ are defined such that ℂ is a field (the operations follow
the conditions for a ring excluding division by 0) and 𝑖2 = −1 holds:

(𝑎 + 𝑏𝑖) +ℂ (𝑐 + 𝑑𝑖) = (𝑎 + 𝑏) + (𝑐 + 𝑑)𝑖

(𝑎 + 𝑏𝑖) ⋅ℂ (𝑐 + 𝑑𝑖) = 𝑎𝑐 + 𝑎𝑑𝑖 + 𝑏𝑐𝑖 + 𝑏𝑑𝑖2

= (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖

• Addition has Neutral Element (0, 0) = 0 and Inverse Element (−𝑎, −𝑏) = −𝑎 − 𝑏𝑖
• Multiplication has Neutral Element (1, 0) = 1 and (non-zero) Inverse Element ( 𝑎

𝑎2+𝑏2 , − 𝑏
𝑎2+𝑏2 )

• The same notation as in ℝ is normally used, for example −(𝑖) = (−0, −1) = −𝑖 and 𝑖−1 =
(0, −1) = −𝑖

• An order relation cannot be defined in a way that satisfies the ordered field axioms. Proof:

Let 0 ≤ 𝑖, condition 3. implies 0 ≤ 𝑖 ⋅ 𝑖 = −1 which is false ∴ 𝑖 ≤ 0
Applying condition 2. 𝑖 + −𝑖 ≤ 0 + −𝑖 ⇒ 0 ≤ −𝑖

Applying condition 3. 0 ≤ −𝑖 ⋅ −𝑖 = 𝑖2 = −1 which is also false and contradicts 𝑖 ≤ 0∎

Nevertheless, they satisfy a generalization of the completeness axiom and we can perform calculus
on them.

5.0.2. Definition - Complex Conjugate
The mapping ⋅ : ℂ → ℂ of a complex number 𝑧 = 𝑎 + 𝑏𝑖 ∈ ℂ is denoted as 𝑧 and defined:

𝑧 ≔ 𝑎 − 𝑏𝑖

It has the following properties ∀𝑧, 𝑤 ∈ ℂ:
• 𝑧 ⋅ 𝑧 ∈ ℝ ≥ 0
• 𝑧 + 𝑤 = 𝑧 + 𝑤
• 𝑧 ⋅ 𝑤 = 𝑧 ⋅ 𝑤
• 𝑧 ⋅ 𝑤 = 𝑧 ⋅ 𝑤
• Re(𝑧) = 𝑧+𝑧

2
• Im(𝑧) = 𝑧−𝑧

2𝑖

5.0.3. Definition - Complex Absolute Function
The complex absolute function |⋅| : ℂ → ℝ is defined as:

|𝑧 = 𝑎 + 𝑏𝑖| ≔
√

𝑧 ⋅ 𝑧 = √𝑎2 + 𝑏2

• |𝑧 ⋅ 𝑤| = √(𝑧 ⋅ 𝑤) ⋅ 𝑧 ⋅ 𝑤 =
√

𝑧 ⋅ 𝑧 ⋅ 𝑤 ⋅ 𝑤 =
√

𝑧 ⋅ 𝑧 ⋅
√

𝑤 ⋅ 𝑤 = |𝑧| ⋅ |𝑤|
• It has the same notion of length when complex numbers are plotted on an Argand diagram

5.0.4. Theorem - Cauchy-Schwartz Inequality
∀𝑧 = 𝑥1 + 𝑦1𝑖, 𝑤 = 𝑥2 + 𝑦2𝑖 ∈ ℂ:

𝑥1𝑥2 + 𝑦1𝑦2 ≤ |𝑧 ⋅ 𝑤|

Proof:
Through algebraic rearrangement, we can show that:

|𝑧 ⋅ 𝑤| − 𝑥1𝑥2 + 𝑦1𝑦2 = (𝑥1𝑦2 − 𝑥2𝑦1)
2

Lemma: 𝑥2 ≥ 0
Therefore |𝑧 ⋅ 𝑤| − 𝑥1𝑥2 + 𝑦1𝑦2 ≥ 0



By applying the compatibility of addition in an ordered field (although ℂ is not an ordered field, |𝑥 ⋅
𝑤| can be expressed in terms of the component real numbers), we arrive at:

|𝑧 ⋅ 𝑤| ≥ 𝑥1𝑥2 + 𝑦1𝑦2∎

5.0.5. Theorem - Complex Triangle Inequality
We can show that the triangle inequality also holds true ∀𝑧 = 𝑥1 + 𝑦1𝑖, 𝑤 = 𝑥2 + 𝑦2𝑖 ∈ ℂ:

|𝑧 + 𝑤| ≤ |𝑧| + |𝑤|

Proof:
Through algebraic rearrangement, we can show:

|𝑧 + 𝑤|2 = |𝑧|2 + |𝑤|2 + 2(𝑥1𝑥2 + 𝑦1𝑦2)

Applying the Cauchy-Schwarz Inequality:

|𝑧|2 + |𝑤|2 + 2(𝑥1𝑥2 + 𝑦1𝑦2) ≤ |𝑧|2 + |𝑤|2 + 2|𝑧 ⋅ 𝑤|

|𝑧 + 𝑤|2 ≤ (|𝑧| + |𝑤|)2

∴ |𝑧 + 𝑤| ≤ |𝑧| + |𝑤|

6. Functions of One Real Variable
6.0.1. Definition - Function
A function 𝑓 : 𝑋 → 𝑌  is a mapping from a domain 𝑋 (not just the natural numbers like sequences)
to range / codomain 𝑌 . For now we only discuss single-valued real functions: 𝑋, 𝑌 ⊆ ℝ. It may
have the following properties:
1. Injective - ∀𝑥, 𝑥′ ∈ 𝑋 : 𝑥 ≠ 𝑥′ ⇒ 𝑓(𝑥) ≠ 𝑓(𝑥′) - Assigns each element of 𝑋 a unique element

in 𝑌
2. Surjective - ∀𝑦 ∈ 𝑌 ∃𝑥 ∈ 𝑋 : 𝑓(𝑥) = 𝑦 - Every element in the range is a possible output of the

function
3. Bijective - It is both injective and surjective, and therefore an inverse function can be defined
4. Two functions are equal ⇔ 𝑋1 = 𝑋2 ∧ 𝑌1 = 𝑌2 ∧ ∀𝑥 ∈ 𝑋, 𝑓1(𝑥) = 𝑓2(𝑥)

6.0.2. Definition - Image and Preimage (Urbild) of a Function
Consider a function 𝑓 : 𝑋 → 𝑌 .
• The Image 𝑓(𝐴) of 𝐴 ⊆ 𝑋 under 𝑓  is defined as:

𝑓(𝐴) ≔ {𝑦 ∈ 𝑌 | ∃𝑥 ∈ 𝐴 : 𝑓(𝑥) = 𝑦}
𝑓(𝐴) ⊆ 𝑌

• The Preimage (Urbild) 𝑓−1(𝐵) of 𝐵 ⊆ 𝑌  under 𝑓  is defined as:

𝑓−1(𝐵) ≔ {𝑥 ∈ 𝑋 | ∃𝑦 ∈ 𝐵 : 𝑓(𝑥) = 𝑦} = {𝑥 ∈ 𝑋 | 𝑓(𝑥) ∈ 𝐵}

𝑓−1(𝐵) ⊆ 𝑋
• A function 𝑓 : 𝑋 → 𝑌  is surjective ⇔ The set 𝑓(𝑋) = 𝑌 , because the image can only contain

domain elements which map to 𝑌  by definition.
• For example consider 𝑓 : ℝ → ℝ ≔ 𝑥 → 0:

‣ 𝑓(ℝ) = {0} - It is not surjective
‣ 𝑓−1(ℝ) = 𝑓−1({0}) = ℝ
‣ 𝑓−1({1}) = ∅



There is an interesting property of finite sets; consider 𝑓 : 𝑋 → 𝑌 , where 𝑋 and 𝑌  are finite sets
with the same number of elements 𝑛:

𝑓 is injective ⇔ 𝑓 is surjective

Proof:
If 𝑓  is injective, the image 𝑓(𝑋) has at least 𝑛 distinct elements so every distinct 𝑥 ∈ 𝑋 has its own
𝑦 ∈ 𝑓(𝑋).
Lemma: A function 𝑓 : 𝑋 → 𝑌  is surjective ⇔ The set 𝑓(𝑋) = 𝑌
We are given that 𝑌  has 𝑛 elements, and since 𝑓(𝑋) ⊆ 𝑌 ⇒ 𝑓(𝑋) = 𝑌  showing that it must also
be surjective.
We must now show that surjectivity ⇒ injectivity. If 𝑓  is surjective, 𝑓(𝑋) = 𝑌  (Lemma), therefore
𝑓(𝑋) has 𝑛 elements.
Consider two elements 𝑥1, 𝑥2 ∈ 𝑋. Since 𝑋 is a set, they are distinct 𝑥1 ≠ 𝑥2.
If 𝑓(𝑥1) = 𝑓(𝑥2) for any two elements, they would “validate” the same member of 𝑓(𝑋), leaving out
at least one element of 𝑌  (deterministic, another input cannot have 2 outputs to make up for it)
meaning 𝑓(𝑋) would have 𝑛 − 1 elements, which contradicts the lemma about surjectivity,
therefore 𝑓  must also be injective ∎
This is not necessarily true for infinite sets, for example 𝑓 : ℕ → ℕ, 𝑓(𝑥) ≔ 𝑥 + 1 is injective but
not surjective.

6.0.3. Definition - Square Root
This is the bijective function 

√
⋅ : ℝ≥0 → ℝ≥0 such that ∀𝑎 ∈ ℝ≥0(

√
𝑎)2 = 𝑎, whose existence is

only possible due to the real numbers being a complete ordered field. TODO: Various proofs
Exercise 2.27 Figalli’s script

6.0.4. Definition - Ring of Functions
For a domain 𝑋, we can define a commutative ring (not a field, there is no inverse element for
multiplication) on the set of real valued functions ℱ(𝑋) ≔ {𝑓 | 𝑓 : 𝑋 → ℝ} with the following
operations:

𝑓1, 𝑓2 ∈ ℱ(𝑋)
(𝑓1 + 𝑓2)(𝑥) ≔ 𝑓1(𝑥) + 𝑓2(𝑥)
(𝑓1 ⋅ 𝑓2)(𝑥) ≔ 𝑓1(𝑥) ⋅ 𝑓2(𝑥)

𝛼 ∈ ℝ, (𝛼 ⋅ 𝑓1)(𝑥) ≔ 𝛼 ⋅ 𝑓1(𝑥)

The constant function is defined as ∀𝑥 ∈ 𝑋, 𝑓(𝑥) = 𝑎.
• Neutral elements - Addition: 𝑓(𝑥) = 0, Multiplication: 𝑓(𝑥) = 1

An order relation ≤ is defined:

𝑓1 ≤ 𝑓2 ⇔ ∀𝑥 ∈ 𝑋, 𝑓1(𝑥) ≤ 𝑓2(𝑥)

6.0.5. Definition - Bounded Functions
As with many function definitions, they are very similar to the definitions for sequences. A function
𝑓 : 𝑋 → 𝑌  is bounded if:

∃𝑀 ∈ ℝ | 𝑀 > 0, ∀𝑥 ∈ 𝑋, |𝑓(𝑥)| < 𝑀

This can be separated into “bounded from above” 𝑓(𝑥) < 𝑀  and below 𝑓(𝑥) < −𝑀



6.0.6. Definition - Monotone Functions
A function 𝑓 : 𝑋 → 𝑌  is called (strictly) monotonically increasing / decreasing if ∀𝑚, 𝑛 ∈ 𝑋:

𝑚 > 𝑛 ⇒ 𝑓(𝑚) ≥ (>)𝑓(𝑛)
𝑚 > 𝑛 ⇒ 𝑓(𝑚) ≤ (<)𝑓(𝑛)

• The rounding function ⌊𝑥⌋ is monotonically increasing but not strictly
• A function is constant ⇔ A function is both monotonically increasing and decreasing. Proof:

Trichotomy
• A strictly monotone function is always injective. Proof:

Assume by contradiction that it is not injective. ∃𝑥1 ≠ 𝑥2 | 𝑓(𝑥1) = 𝑓(𝑥2). However, since 𝑥1 ≠
𝑥2, they must be either > or < each other and therefore 𝑓(𝑥1) ≠ 𝑓(𝑥2) (monotone) which proves
that they are injective by contradiction ∎

6.0.7. Definition - 𝜀𝛿 Continuity
Intuitively, a function is continuous over an interval if we can draw it without lifting the pencil. A
function is continuous at a point 𝑥0 ∈ 𝑋 if:

∀𝜀 > 0∃𝛿 > 0 | ∀𝑥 ∈ 𝑋, |𝑥 − 𝑥0| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜀

It is continuous over a set 𝑋 if it is continuous ∀𝑥0 ∈ 𝑋, the definition can be amended to
∀𝑥1, 𝑥2 ∈ 𝑋, ∃𝛿 | |𝑥1 − 𝑥2| < 𝛿 ⇒ |𝑓(𝑥1) − 𝑓(𝑥2)| < 𝜀 (a different 𝛿 may be chosen for each pair
of points). If there is a jump in the function at the point 𝑥, then there exists a small enough 𝜀, so that
no matter how close 𝑥 is to 𝑥0, the max error 𝜀 will never be satisfied.
• The Dirichlet Function based on the characteristic function is non-continuous at every point:

1ℚ : ℝ → {1, 0}
1ℚ ≔ 𝜒ℚ

This is because there are irrational, real numbers around every rational number so for 0 < 𝜀 <
1∄𝛿 such that points next to each other have an output < 𝜀. This also demonstrates why the ∀𝑥 ∈
𝑋 is necessary, otherwise one could simply pick two rational numbers within the 𝛿 interval (it is a
dense set).

• Constant functions are continuous. Proof:
∀𝑥, 𝑥0 ∈ 𝑋, 𝑓(𝑥) − 𝑓(𝑥0) = 0 < 𝜀 therefore there always exists such a 𝛿∎

• The function 𝑓(𝑥) = 𝑥 is continuous. Proof:
We need to find a 𝛿 such that ∀𝑥1, 𝑥2 ∈ 𝑋, |𝑥1 − 𝑥2| < 𝛿 ⇒ |𝑓(𝑥1) − 𝑓(𝑥2)| < 𝜀.
Because |𝑓(𝑥1) − 𝑓(𝑥2)| = |𝑥1 − 𝑥2| and 𝛿, 𝜀 > 0, 𝛿 can always be chosen such that the second
inequality also holds true ∀𝜀 > 0∎

• The absolute function 𝑓(𝑥) = |𝑥| is continuous. Proof:
Inverse triangle inequality: |𝑓(𝑥1) − 𝑓(𝑥2)| = ||𝑥1| − |𝑥2|| ≤ |𝑥1 − 𝑥2| < 𝛿 = 𝜀∎

• 𝑥2 is continuous TODO

6.0.8. Lemma - Operations on Continuous Functions
Let 𝑓1, 𝑓2 : 𝐷 → ℝ be continuous functions at a point 𝑥0 ∈ 𝐷. The following functions are also
continuous at 𝑥0:
1. (𝑓1 + 𝑓2)(𝑥) - Proof:

We are given:



∀𝜀 > 0∀𝑥 ∈ 𝑋
∃𝛿1 > 0 | |𝑥 − 𝑥0| < 𝛿1 ⇒ |𝑓1(𝑥) − 𝑓1(𝑥0)| < 𝜀
∃𝛿2 > 0 | |𝑥 − 𝑥0| < 𝛿2 ⇒ |𝑓2(𝑥) − 𝑓2(𝑥0)| < 𝜀

Setting 𝛿 = min{𝛿1, 𝛿2}:

∃𝛿 > 0 | |𝑥 − 𝑥0| < 𝛿 ⇒ 0 ≤ |𝑓1(𝑥) − 𝑓1(𝑥0)| < 𝜀 ∧ 0 ≤ |𝑓2(𝑥) − 𝑓2(𝑥0)| < 𝜀
|𝑓1(𝑥) − 𝑓1(𝑥0)| + |𝑓2(𝑥) − 𝑓2(𝑥0)| < 2𝜀

Since functions form a ring, we want to show ∃𝛿 | |𝑥 − 𝑥0| < 𝛿 ⇒ |𝑓1(𝑥) + 𝑓2(𝑥) − 𝑓1(𝑥0) +
𝑓2(𝑥0)|. Applying the triangle inequality gives:

|𝑓1(𝑥) + 𝑓2(𝑥) + (−(𝑓1(𝑥0) + 𝑓2(𝑥0)))| ≤ |𝑓1(𝑥) − 𝑓1(𝑥0)| + |𝑓2(𝑥) − 𝑓2(𝑥0)| < 2𝜀

Therefore (𝑓1 + 𝑓2)(𝑥) is also continuous at 𝑥0∎
2. (𝑓1 ⋅ 𝑓2)(𝑥) - Proof:

Following the previous definitions, we wish to show that ∃𝛿 | |𝑥 − 𝑥0| < 𝛿 ⇒ |𝑓1(𝑥) ⋅ 𝑓2(𝑥) −
𝑓1(𝑥0) ⋅ 𝑓2(𝑥0)| < 𝜀, which we can achieve as follows:

|𝑓2(𝑥)||𝑓1(𝑥) − 𝑓1(𝑥0)| < |𝑓2(𝑥)|𝜀
|𝑓1(𝑥0)||𝑓2(𝑥) − 𝑓2(𝑥0)| < |𝑓1(𝑥0)|𝜀

|𝑓2(𝑥)𝑓1(𝑥) − 𝑓2(𝑥)𝑓1(𝑥0)| + |𝑓1(𝑥0)𝑓2(𝑥) − 𝑓1(𝑥0)𝑓2(𝑥0)| < 𝜀(|𝑓1(𝑥)| + |𝑓2(𝑥)|)
|𝑓1(𝑥) ⋅ 𝑓2(𝑥) − 𝑓1(𝑥0) ⋅ 𝑓2(𝑥0)| < 𝜀(|𝑓1(𝑥)| + |𝑓2(𝑥)|)

Since 𝜀 > 0 is arbitrary, this proves the continuity of the product of continuous functions ∎
3. ∀𝛼 ∈ ℝ, (𝛼 ⋅ 𝑓2)(𝑥) - The proof follows from setting 𝑓1(𝑥) in the previous Lemma to the constant

function 𝑓1(𝑥) = 𝛼, which has been shown to be continuous.

This can be extended to continuity over a common subset if they are both continuous over that set.

6.0.9. Corollary - Polynomials are continuous
All polynomials can be constructed from a linear combination of 𝑓(𝑥) = 𝑥, its powers and constant
functions 𝑓(𝑥) = 𝑎, which were both shown to be continuous ∈ ℝ. Hence polynomials are also
continuous for all points in ℝ.

6.0.10. Definition - Composition of Functions
Functions can be passed as arguments into one another:

𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑌 → 𝑍
𝑔 ∘ 𝑓 : 𝑋 → 𝑍
𝑔 ∘ 𝑓 ≔ 𝑔(𝑓(𝑥))

• Composition of functions is associative and brackets are irrelevant

6.0.11. Theorem - Composition of Continuous Functions
Let 𝑓 : 𝑋 → 𝑌  which is continuous at 𝑥0 and 𝑔 : 𝑌 → 𝑍 continuous at 𝑓(𝑥0) such that 𝑋, 𝑌 , 𝑍 ⊆
ℝ. 𝑔 ∘ 𝑓  is also continuous at 𝑥0.
Proof:
The following properties apply ∀𝜀 > 0:

∃𝛿1 | ∀𝑥 ∈ 𝑋, |𝑥 − 𝑥0| < 𝛿1 ⇒ |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜀
∃𝛿2 | ∀𝑓(𝑥) ∈ 𝑌 , |𝑓(𝑥) − 𝑓(𝑥0)| < 𝛿2 ⇒ |𝑔(𝑓(𝑥)) − 𝑔(𝑓(𝑥0))| < 𝜀



To show continuity of 𝑔 ∘ 𝑓  at 𝑥0, I will show ∃𝛿 | ∀𝑥 ∈ 𝑋, |𝑥 − 𝑥0| < 𝛿 ⇒ |𝑔(𝑓(𝑥)) − 𝑔(𝑓(𝑥0))| <
𝜀. By choosing 𝛿 = min(𝛿1, 𝛿2) , this is clearly the case as:

|𝑥 − 𝑥0| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜀 ⇒ |𝑔(𝑓(𝑥)) − 𝑔(𝑓(𝑥0))|

The surjectivity of 𝑓(𝑥) does not matter, as the final inequality only applies if the intermediate
|𝑓(𝑥) − 𝑓(𝑥0)| < 𝜀 is true ∎
As usual, this extends to the entire domain if both 𝑓  and 𝑔 are continuous functions.

6.0.12. Theorem - Sequential Continuity
This is an alternative characterization of a continuous function. The function 𝑓 : 𝑋 → ℝ is
continuous at 𝑥0 ∈ 𝑋 ⇔ For every sequence 𝑥𝑛 ⊊ 𝑋 converging to 𝑥0 (there always exists at least
1, for example 𝑥𝑛 = 𝑥0), the sequence 𝑓(𝑥𝑛) converges to 𝑓(𝑥0).
Proof:
The following holds true for all sequences converging to 𝑥0:

∀𝛿 > 0∃𝑁1 | ∀𝑛 > 𝑁1, |𝑥𝑛 − 𝑥0| < 𝛿

If the sequence 𝑓(𝑥𝑛) converges to 𝑓(𝑥0):

∀𝜀 > 0∃𝑁2 | ∀𝑛 > 𝑁2, |𝑓(𝑥𝑛) − 𝑓(𝑥0)| < 𝜀

Choosing 𝑁 = max{𝑁1, 𝑁2} both conditions hold true:

∀𝜀 > 0∃𝑁 | ∀𝑛 > 𝑁, |𝑥𝑛 − 𝑥0| < 𝛿 ∧ |𝑓(𝑥𝑛) − 𝑓(𝑥0)| < 𝜀

TODO: Somehow this is equivalent to saying ∀𝑥 ∈ 𝑋:

∀𝜀 > 0∃𝛿 | ∀𝑥 ∈ 𝑋|𝑥 − 𝑥0| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜀∎

6.0.13. Theorem - Intermediate Value Theorem (Zwischenwertsatz)
Let 𝑓 : [𝑎, 𝑏] → ℝ be a continuous function such that 𝑎 ≤ 𝑏. ∀𝑐 ∈ [𝑓(𝑎), 𝑓(𝑏)]∃𝑥 ∈ [𝑎, 𝑏] | 𝑓(𝑥) = 𝑐.
In simpler words, a continuous function 𝑓  takes on every value between [𝑓(𝑎), 𝑓(𝑏)] at least once - it
is surjective over [𝑓(𝑎), 𝑓(𝑏)]. This is useful to show surjectivity or to prove that an injective,
continuous function is strictly monotone over an interval (assume it is not and choose a point that
violates the monotonicity, there exists two points on either side with the same output due to this
theorem).
Proof:
Let 𝑐 be any value who want to show is in the domain of the continuous function 𝑓 : [𝑎, 𝑏] → 𝑋
such that 𝑓(𝑎) < 𝑐 < 𝑓(𝑏) (one can prove for 𝑓(𝑏) < 𝑓(𝑎) similarly by working with the set 𝑈 =
{𝑥 ∈ [𝑎, 𝑏] | 𝑐 < 𝑓(𝑥)}).
Consider the set 𝐿 = {𝑥 ∈ [𝑎, 𝑏] | 𝑓(𝑥) < 𝑐}. The set is not-empty (𝑎 ∈ 𝐿) and is bounded, therefore
it has a supremum 𝑠. We will now show that 𝑠 ≠ 𝑎 ∧ 𝑠 ≠ 𝑏.
Due to the continuity of 𝑓  at 𝑎, we can keep 𝑓(𝑥) any 𝜀 > 0 away (at most) from 𝑓(𝑎) such that
|𝑥 − 𝑎| < 𝛿. Choose 𝜀 < 𝑐 − 𝑓(𝑎) (to pull the values away from 𝑎 towards whichever value outputs
𝑐).
The 𝑥’s which satisfy this 𝜀 must be in 𝐿 (∀𝑥 ∈ [𝑎, 𝑏] ∧ 𝑓(𝑥) − 𝑓(𝑎) < 𝜀 = 𝑐 − 𝑓(𝑎) ⇒ 𝑓(𝑥) < 𝑐)
but not equal to 𝑎 (because 𝜀 ≠ 0), therefore 𝐿 contains at least one element greater than 𝑎 ⇒ the
supremum 𝑠 > 𝑎. The same can be argued about the continuity at 𝑏, any elements close to 𝑏 are
greater than 𝑐 (due to 𝑐 < 𝑓(𝑏)) ⇒ not in 𝐿, therefore the supremum 𝑠 < 𝑏.
We now know that 𝑠 ∈ (𝑎, 𝑏) and want to show 𝑓(𝑠) = 𝑐. Since 𝑓  is continuous over [𝑎, 𝑏], it is also
continuous at 𝑠:



∀𝜀 > 0∃𝛿 > 0| ∀𝑥 ∈ [𝑎, 𝑏], |𝑥 − 𝑠| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑠)| < 𝜀

Considering 𝛿 for any 𝜀, there must exist some 𝑥0 | − 𝜀 + 𝑓(𝑠) < 𝑓(𝑥0) < 𝜀 + 𝑓(𝑠) which is in the
interval 𝑥0 ∈ (𝑠 − 𝛿, 𝑠] (because 𝑠 is the supremum). Since 𝑓(𝑥0) < 𝑐, this leads to:

−𝜀 + 𝑓(𝑠) < 𝑐
𝑓(𝑠) < 𝑐 + 𝜀

Furthermore, there exists an 𝑥1 ∈ [𝑠, 𝑠 + 𝛿) | 𝑓(𝑥1) ≥ 𝑐 (otherwise it would’ve been in 𝐿), and due
to the continuity of 𝑓  at 𝑠:

−𝜀 + 𝑓(𝑠) < 𝑓(𝑥1) < 𝜀 + 𝑓(𝑠)
𝑐 < 𝜀 + 𝑓(𝑠)

−𝜀 + 𝑐 < 𝑓(𝑠)
−𝜀 + 𝑐 < 𝑓(𝑠) < 𝑐 + 𝜀

Choosing 𝜀 → 0, it is clear that 𝑓(𝑠) = 𝑐 whilst 𝑠 ∈ [𝑎, 𝑏]∎
Summary:
• Define set 𝐿 = {𝑥 ∈ [𝑎, 𝑏] | 𝑓(𝑥) < 𝑐}
• Show that its supremum 𝑠 ∈ (𝑎, 𝑏) due to continuity at both of those points
• Exploit the continuity at 𝑠 along with points 𝑥0 ∈ (𝑠 − 𝛿, 𝑠], ∈ 𝐿 ⇒ 𝑓(𝑥0) < 𝑐 and 𝑥1 ∈ [𝑠, 𝑠 +

𝛿), ∉ 𝐿 ⇒ 𝑓(𝑥1) ≥ 𝑐 to show that 𝑓(𝑠) = 𝑐 as 𝜀 → 0 for any 𝑐 ∈ (𝑓(𝑎), 𝑓(𝑏))

6.0.14. Definition - Inverse Function
Any bijective function 𝑓 : 𝑋 → 𝑌  has a corresponding inverse 𝑓−1 : 𝑌 → 𝑋 (not to be confused
with the preimage, which is defined for all functions but doesn’t take account of every element in 𝑌 ,
not surjective) defined such that:

𝑓−1 ∘ 𝑓 = 𝑓 ∘ 𝑓−1 = id

6.0.15. Theorem - Inverse Function Theorem
A function that is strictly monotone and continuous (for example 𝑎𝑥) over an interval 𝐼 ⊆ ℝ is
bijective and has an inverse function, which is also strictly monotone and continuous.
Proof:
Let 𝐽 = 𝑓(𝐼) and consider the strictly monotone, continuous function 𝑓 : 𝐼 → 𝐽 . It is surjective by
definition and injective due to its strict monotonicity, therefore the inverse 𝑓−1 : 𝐽 → 𝐼  exists,
which is also strictly monotone:

∀𝑥1, 𝑥2 ∈ 𝑋

𝑥1 < 𝑥2 ⇔ 𝑓(𝑥1) < (>)𝑓(𝑥2) ⇔ 𝑓−1(𝑓(𝑥1)) < 𝑓−1(𝑓(𝑥2))

The continuity of the inverse can be shown using the sequential continuity criteria but is rather
complicated.

6.0.16. Definition - n’th Root Function
This is defined as the inverse of 𝑥𝑛 : [0, ∞) → [0, ∞) and can be written as either 𝑛

√
𝑥 or 𝑥 1

𝑛 .

6.0.17. Theorem - Compact Domain, Bounded Function
Let 𝑓 : [𝑎, 𝑏] → ℝ be a continuous function with a compact (closed and bounded) domain, its range
(and by convention 𝑓  itself) is therefore also bounded.
Proof:
Assume by contradiction that 𝑓  is not bounded, ie. ∀𝑁 ∈ ℝ | 𝑁 > 0, ∃𝑥 ∈ [𝑎, 𝑏] | |𝑓(𝑥)| > 𝑁 .



Because the domain is compact, there exists a convergent subsequence 𝑥𝑛 with a limit lim𝑛→∞ 𝑥𝑛 ∈
[𝑎, 𝑏], such that due to the composition of functions |𝑓(𝑥𝑛)| → |𝑓(lim𝑛→∞ 𝑥𝑛)|. TODO: I did not
understand the last contradiction step Theorem 3.39 Figalli
• The domain must be compact, not just bounded. For example, the domain of the function tan :

(−𝜋
2 , 𝜋

2 ) → ℝ is bounded but not closed, therefore the function is unbounded.

6.0.18. Definition - Extrema
The maximum (minimum) of 𝑓 : 𝑋 → ℝ is defined as the value 𝑓(𝑚) of the point 𝑚 ∈ 𝑋 such that
∀𝑥 ∈ 𝑋, 𝑓(𝑥) ≤ (≥)𝑓(𝑚). Bounded functions (and therefore any continuous function with a
compact domain) have both a maximum and minimum over their domain.

6.0.19. Definition - Uniform Continuity
This is a stricter definition of 𝜀𝛿 continuity, where the same 𝛿 satisfies the 𝜀 error interval for all
points:

𝑓 : 𝑋 → 𝑌
∀𝜀 > 0∃𝛿 | ∀𝑥1, 𝑥2 ∈ 𝑋, |𝑥1 − 𝑥2| < 𝛿 ⇒ |𝑓(𝑥1) − 𝑓(𝑥2)| < 𝜀

• An example of a continuous but not uniformly continuous function is 𝑥2 : ℝ → [0, ∞) and 𝑒𝑥 :
ℝ → (0, ∞) - they become nearly vertical as 𝑥 increases, meaning that 𝛿 → 0 to satisfy the entire
domain, which is not allowed as 𝛿 > 0. Allowing a different 𝛿 for each point (normal continuity) is
however allowed. Non-uniform continuity can be proved by choosing 𝑥2 = 𝑥1 + 𝛿

2  and showing
that |𝑓(𝑥1) − 𝑓(𝑥2)| < 𝜀 doesn’t hold true ∀𝑥1 ∈ 𝑋, a proof by contradiction.

• A continuous function on a compact domain is uniformly continuous. Intuition: It has a
maximum and minimum, therefore we can choose a 𝛿 > 0 which satisfies the epsilon interval for
all points.

6.0.20. Definition - Bernoulli’s Inequality
This states that:

∀𝑎 ∈ ℝ | 𝑎 ≥ −1, 𝑛 ∈ ℕ | 𝑛 ≥ 1
(1 + 𝑎)𝑛 ≥ 1 + 𝑛𝑎

Proof by induction:
For 𝑛 = 1, 1 + 𝑎 ≥ 1 + 𝑎 holds true. Assume it is true for 𝑛 = 𝑘, 𝑛 = 𝑘 + 1 amounts to:

(1 + 𝑎)𝑘 ≥ 1 + 𝑘𝑎
𝑎 ≥ −1 ⇒ (1 + 𝑎) ≥ 0

∴ (1 + 𝑎)𝑘+1 = (1 + 𝑎)𝑘 ⋅ (1 + 𝑎) ≥ (1 + 𝑘𝑎) ⋅ (1 + 𝑎)

(1 + 𝑎)𝑘+1 ≥ 1 + 𝑎 + 𝑘𝑎 + 𝑘𝑎2 = 1 + 𝑎(1 + 𝑘) + 𝑘𝑎2

𝑘𝑎2 ≥ 0, ∴ 1 + 𝑎(1 + 𝑘) + 𝑘𝑎2 ≥ 1 + 𝑎(1 + 𝑘)

∴ (1 + 𝑎)𝑘+1 ≥ 1 + 𝑎(1 + 𝑘)

Therefore it holds true for all 𝑛 ∈ ℕ∎.

6.0.21. Definition - Euler’s Number as a Limit
This converging sequence was discovered by Bernoulli whilst calculating the effect of frequency of
payments on compound interest:



𝑥 ∈ ℝ

𝑒𝑥 = exp(𝑥) ≔ lim
𝑛→∞

(1 + 𝑥
𝑛

)
𝑛

It converges to a positive, real number. Proof:
First we show that it is monotonically increasing. Let 𝑛0 ≥ 1, 𝑛0 > −𝑥:

∀𝑛 ≥ 𝑛0,
𝑥

(𝑛 + 1)(𝑛 + 𝑥)
≤ 𝑥 + 𝑛

(𝑛 + 1)(𝑛 + 𝑥)
= 1

𝑛 + 1
< 1

𝑛 + 𝑥 > 0

∴ 𝑥
(𝑛 + 1)(𝑛 + 𝑥)

≤ 1

∴ − 𝑥
(𝑛 + 1)(𝑛 + 𝑥)

≥ −1

We now want to show that 𝑥𝑛+1
𝑥𝑛

≥ 1:

(1 + 𝑥
𝑛+1)

𝑛+1

(1 + 𝑥
𝑛)𝑛 = (1 + 𝑥

𝑛
)(

1 + 𝑥
𝑛+1

1 + 𝑥
𝑛

)
𝑛+1

= 𝑛 + 𝑥
𝑛

(1 − 𝑥
(𝑛 + 1)(𝑥 + 𝑛)

)
𝑛+1

Applying Bernoulli’s inequality to the second term with 𝑎 = − 𝑥
(𝑛+1)(𝑛+𝑥)  and 𝑛 = 𝑛 + 1:

𝑛 + 𝑥
𝑛

(1 − 𝑥
(𝑛 + 1)(𝑥 + 𝑛)

)
𝑛+1

≥ 𝑛 + 𝑥
𝑛

(1 + −𝑥(𝑛 + 1)
(𝑛 + 1)(𝑛 + 𝑥)

) = 𝑛 + 𝑥
𝑛

(1 + − 𝑥
𝑛 + 𝑥

)

= 𝑛 + 𝑥
𝑛

( 𝑛
𝑛 + 𝑥

) = 1

∴
𝑥𝑛+1
𝑥𝑛

≥ 1∀𝑛 ≥ 𝑛0 ≥ 1

Showing that the (1 + 𝑥
𝑛)𝑛 is monotonically increasing. It remains to show that it is bounded,

consider the case of 𝑥 ≤ 0:

∀𝑛 ∈ ℕ, 1 + 𝑥
𝑛

≤ 1

Showing that 1 is the upper bound. Now we consider the case 𝑥 > 0:

((1 + 𝑥
𝑛

)(1 − 𝑥
𝑛

))
𝑛

= (1 − 𝑥2

𝑛2 )
𝑛

≤ 1

∴ (1 + 𝑥
𝑛

)
𝑛

≤ 1
(1 − 𝑥

𝑛)𝑛

(1 − 𝑥
𝑛)𝑛 was shown to have upper bound 1 in the case 𝑥 ≤ 0, therefore the sequence is also

bounded for 𝑥 > 0. Since it is monotonically increasing and bounded, it converges in all cases ∎

6.0.22. Definition - Properties of 𝑒𝑥

The exponential function exp : ℝ → ℝ>0 exhibits many useful and interesting properties:
• ∀𝑥 > −𝑛, exp(𝑥) ≥ (1 + 𝑥

𝑛)𝑛 since it is defined as the limit of a monotonically increasing
sequence

• ∀𝑥 ∈ ℝ, exp(𝑥) ≥ 1 + 𝑥 this is a consequence of the aforementioned Lemma



Since it is defined as the limit of a sequence, we must show that the usual exponential rules also
apply before we can treat it as such:
• exp(−𝑥) = exp(𝑥)−1 Proof:

Lemma: Multiplying converging sequences

exp(𝑥) exp(−𝑥) = lim
𝑛→∞

(1 − 𝑥2

𝑛2 )
𝑛

Eventually 𝑛 > |𝑥|, therefore −𝑥2

𝑛2 ≥ −1 and we can apply Bernoulli’s inequality:

exp(𝑥) exp(−𝑥) ≥ 1 + −𝑥2

𝑛2 𝑛 = 1 − 𝑥2

𝑛

We have shown that lim𝑛→∞ (1 − 𝑥2

𝑛2 )
𝑛

 has upper bound 1, therefore:

1 − 𝑥2

𝑛
≤ exp(𝑥) exp(−𝑥) ≤ 1

lim𝑛→∞ 1 − 𝑥2

𝑛 = 1 thus ∀𝑥 ∈ ℝ, exp(𝑥) exp(−𝑥) = 1 = exp(𝑥)
exp(𝑥)∎

• exp(𝑥 + 𝑦) = exp(𝑥) exp(𝑦) Proof:
I aim to show that exp(𝑥) exp(𝑦)

exp(𝑥+𝑦) = 1

exp(𝑥) exp(𝑦) = lim
𝑛→∞

[(1 + 𝑥
𝑛

)
𝑛
(1 + 𝑦

𝑛
)

𝑛
= (1 + 𝑥 + 𝑦

𝑛
+ 𝑥𝑦

𝑛2 )
𝑛
]

exp(𝑥) exp(𝑦)
exp(𝑥 + 𝑦)

=
(1 + 𝑥+𝑦

𝑛 + 𝑥𝑦
𝑛2 )𝑛

(1 + 𝑥+𝑦
𝑛 )𝑛 = (1 + (𝑥𝑦)

𝑛2(1 + 𝑥+𝑦
𝑛 )

)
𝑛

As 𝑛 → ∞:

(1 + 𝑥𝑦
2𝑛2 )

𝑛
< (1 + (𝑥𝑦)

𝑛2(1 + 𝑥+𝑦
𝑛 )

)
𝑛

< (1 + 2𝑥𝑦
𝑛2 )

𝑛

lim
𝑛→∞

(1 + 𝑥𝑦
2𝑛2 )

𝑛
= lim

𝑛→∞
(1 + 2𝑥𝑦

𝑛2 )
𝑛

= 1

Due to the squeeze theorem, exp(𝑥) exp(𝑦)
exp(𝑥+𝑦)  also converges to 1, proving that multiplication behaves

the same as exponentials ∎
• It is continuous - This proof requires several lemmas / tricks, dig deeper if part of Kobel-Keller’s

course.
• It is strictly monotone increasing. Proof:

Consider 𝑥1, 𝑥2 ∈ ℝ | 𝑥1 < 𝑥2 ⇒ 𝑥2 − 𝑥1 > 0, we want to show that exp(𝑥1) < exp(𝑥2).
Applying the Lemma exp(𝑥) ≥ 1 + 𝑥:

exp(𝑥2 − 𝑥1) ≥ 1 + 𝑥2 − 𝑥1 > 1
exp(𝑥1) exp(𝑥2 − 𝑥1) > 1 exp(𝑥1)

exp(𝑥2) > exp(𝑥1)∎
• It is bijective. Proof:

It is strictly monotonically increasing and thus injective.
Choosing 𝑥1, 𝑥2 ∈ ℝ such that exp(𝑥1) < exp(𝑥2), there always exists some 𝑥𝑚 ∈ ℝ | exp(𝑥𝑚) ∈
[exp(𝑥1), exp(𝑥2)] due to the intermediate value theorem, proving surjectivity over ℝ>0∎



• It displays the unique property that its derivative at any point is the same. TODO prove using first
principles

𝑑𝑒𝑥

𝑑𝑥
= lim

ℎ→0

𝑒𝑥+ℎ − 𝑒𝑥

ℎ

6.0.23. Definition - Natural Logarithm
Due to the inverse function theorem, the inverse of exp(𝑥) exists and is also strictly monotonic and
continuous, denoted as:

ln(𝑥) = exp(𝑥)−1 : ℝ>0 → ℝ

The typical log identities apply, by rearranging the exponential identities proven for exp(𝑥):
• ln(1) = 0
• ln(𝑥−1) = − ln(𝑥)
• ln(𝑎𝑏) = ln(𝑎) + ln(𝑏)
• ∀𝑥 ∈ ℝ>0, ln(𝑥) ≤ 𝑥 − 1

6.0.24. Theorem - Logarithm Identities
Logarithms are equipped with a variety of useful identities for basic calculations as well as calculus:
• Change of basis, useful with log tables:

𝑏log𝑏 𝑥 = 𝑥 = 𝑒ln 𝑥 = 𝑒ln(𝑏)log𝑏 𝑥 = 𝑒ln(𝑏) log𝑏(𝑥)

ln 𝑥 = ln(𝑏) log𝑏(𝑥)

log𝑏(𝑥) = ln 𝑥
ln 𝑏

• 𝑎 > 0, 𝑥 ∈ ℝ, 𝑎𝑥 = 𝑒𝑥 ln(𝑎) - Useful for taking the derivative of an arbitrary exponent
• Slide rules were widely used for performing multiplication, division and many other operations

before electronic calculators became widespread in the 70s. They contain pairs of scales with some
logarithmic base marked, for example ln(𝑥) such that the x-values were marked at decreasing
distances representing the output values. To calculate 1.2 ⋅ 2.6, one could align the start of the first
scale at the position where 1.2 is marked on the second, such that distance between the start of
the second and 2.6 on the first scale is equal to ln(1.2) + ln(2.6) = ln(1.2 ⋅ 2.6) (thanks to ln(𝑎) +
ln(𝑏) ≡ ln(𝑎𝑏)) which can simply be read off the marking. Division is done in a similar fashion
and multiples of 10 can easily be factored out to ensure the result fits in the scale.

6.0.25. Definition - Limit of a Function
This can be used to represent the value of function at a point which is not necessarily in the domain
of the function, for example at an asymptote. Consider a point 𝑥0 ∈ ℝ | ∀𝛿 > 0, 𝑋 ∩ (𝑥0 − 𝛿, 𝑥0 +
𝛿) ≠ ∅ (the points immediately next to 𝑥0 are in the domain of 𝑓 : 𝑋 → ℝ), such a point is called an
accumulation point of the domain 𝑋.
The limit 𝐿 of 𝑓  at an accumulation point 𝑥0 is formally defined as:

lim
𝑥→𝑥0

𝑓(𝑥) = 𝐿 ⇔ ∀𝜀 > 0∃𝛿 > 0 | ∀𝑥 ∈ (𝑋 ∩ (𝑥0 − 𝛿, 𝑥0 + 𝛿)), |𝑓(𝑥) − 𝐿| < 𝜀

This definition is very similar to continuity at the point 𝑥0, with the difference that 𝑥0 is not
required to be in the domain, and 𝐿 is what the output 𝑓(𝑥0) would be if based on its surrounding
points.
• A limit may not always exist (for example at a jump in the surrounding points) but if it does, it

is unique.



• If there is a jump in the function at 𝑥0 but the surrounding points are “continuous” / it is a bound,
the limit of 𝑋 \ 𝑥0 is nonetheless defined based on the surrounding points and the jump is
ignored, this can be used to correct so-called removable discontinuities and defined the
continuous extension of 𝑓(𝑥):

𝐿 = lim
𝑥→𝑥0
𝑥≠𝑥0

𝑓(𝑥)

𝑓(𝑥) : 𝑋 → ℝ ≔ {𝑓(𝑥) if 𝑥 ≠ 𝑥0
𝐿 if 𝑥 = 𝑥0

• Linear combinations of functions with limits at 𝑥0 hold:

lim
𝑥→𝑥0

𝑓(𝑥) = 𝐿1, lim
𝑥→𝑥0

𝑔(𝑥) = 𝐿2

lim
𝑥→𝑥0

(𝑓 + 𝑔)(𝑥) = 𝐿1 + 𝐿2

lim
𝑥→𝑥0

(𝑓 ⋅ 𝑔)(𝑥) = 𝐿1 ⋅ 𝐿2

lim
𝑥→𝑥0

(𝛼𝑓)(𝑥) = 𝛼𝐿1

• A function is continuous at 𝑥0 ⇔ lim𝑥→𝑥0
𝑓(𝑥) = 𝑓(𝑥0), this is the same as the continuity

definition.

6.0.26. Theorem - Composition of Limits
Consider a function 𝑓 : 𝑋 → 𝑌  such that the limit lim𝑥→𝑥0

𝑓(𝑥) is defined. If 𝑓  is composed with a
continuous function 𝑔 : 𝑌 → 𝑍 , the following holds true:

lim
𝑥→𝑥0

𝑔 ∘ 𝑓(𝑥) = 𝑔( lim
𝑥→𝑥0

𝑓(𝑥))

Proof: Because 𝑔(𝑥) is continuous, its limit is equal to its output throughout its domain 𝑌  (Lemma),
therefore when it is composed with another (potentially non-continuous) function, the limit depends
on the inner value.

6.0.27. Definition - Diverging Limit
The limit of a function diverges as 𝑥 → 𝑥0 if:

lim
𝑥→𝑥0

𝑓(𝑥) = (−)∞ ⇔

∀𝑀 ∈ ℝ | 𝑀 > 0∃𝛿 > 0 | ∀𝑥 ∈ (𝑋 ∩ (𝑥0 − 𝛿, 𝑥0 + 𝛿)), (−)𝑀 < (>)𝑥0

6.0.28. Definition - One-Sided Limit
Limits can be defined with a direction the value is approached at:

(
((
( lim

𝑥→𝑥0
𝑥≥(≤)𝑥0

𝑓(𝑥) = 𝐿
)
))
) ≔ (∀𝜀 > 0∃𝛿 > 0 | ∀𝑥 ∈ (𝑋 ∩ [𝑥0, 𝑥0 + 𝛿)((𝑥0 − 𝛿, 𝑥0])), |𝑓(𝑥) − 𝐿| < 𝜀

A one-sided continuous extension can also be defined by using an open bound (𝑥0, 𝑥0 + 𝛿) and is
represented using notation such as lim𝑥→𝑥0

𝑥>𝑥0

.

• For example, the positive indicator function’s 𝜒+ left lim𝑥=0
𝑥<0

= 0 and right lim𝑥=0
𝑥>0

= 1 limits are

different at the same point 𝑥 = 0.



6.0.29. Definition - Limits at ∞
The limit of a function as its input tends to ∞ is characterized as follows: 

The range of a continuous function with / bounded to a compact domain is also compact.

The maxi-, mini-, supre- and infimum of a function are defined as expected on its range.

Every continuous function with a compact domain and therefore range possesses a
maximum and minimum.

6.0.30. Topological Continuity Definitions
Continuity of a function can also be defined with the following topological criteria:

6.0.30.1. Closed / Open Sets
𝑓 : 𝑋 → 𝑌 is continuous ⇔

The inverse image (Urbild) of every relatively open / closed subset in 𝑋 is also relatively open / closed.

6.0.30.2. Neighbourhoods
𝑓 : 𝑋 → 𝑌 is continuous ⇔

The inverse image of every neighbourhood at point 𝑓(𝑥0) in 𝑌 is also a neighbourhood of 𝑥0 in 𝑋
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