
Mathematische Methoden

Contents
1 Fourier Transforms ... 2
1.1 Negative Frequencies .. 3
1.2 Analysis (Transform) ... 3
1.2.1 How It Works - Dot Products ... 4
1.3 Synthesis (Inverse Transform) .. 4
1.4 Discrete Fourier Transform ... 5
1.5 Fourier Series ... 5
2 Proposed Project: Digital Spectrum Analyzer .. 6

1 Fourier Transforms
Analysis - Converts from time-domain to frequency domain
Synthesis - Synthesises the approximated frequency-domain signal back to the time-domain by
superposing its sinusoids.

The goal is to find a set of periodic functions, such that their superposition matches the signal being
analysed. This is usually done by finding the suitable sinusoid for each possible frequency, changing
the time-domain signal to frequency-domain sets of amplitudes and phase shifts.

To be able to capture an arbitrary signal in the frequency domain, we need to determine the
amplitude, frequency and phase difference of each possible frequency. A possible basis could be a
single sin function:

𝜌(𝜔) sin(𝜔𝑡 + 𝜑(𝜔))

Where 𝜌(𝜔) is the amplitude distribution and 𝜑(𝜔) the phase shift distribution for all frequencies
which we must determine. There are variants such as DCT and wavelet decomposition which work
in this way. In fact, there are endless possible bases which can capture any signal, such bases are
called complete.

However unless there is a compelling reason to use an alternative basis, Fourier transforms are done
using complex numbers as polar coordinates in the complex plane. This representation has many
advantages making them suitable:
• We can represent them in a compact, easy to manipulate way using Euler’s formula:

𝑅𝑒𝑖𝜔𝑡 = 𝑅(cos(𝜔𝑡) + 𝑖 sin(𝜔𝑡))

This is especially useful when solving for the Fourier transform of a known integrable function
(rather than sampling a signal digitally), as powers of 𝑒 are easy to combine and simplify.
• They encode amplitude and phase for a given frequency, where the amplitude is simply the radius

in the complex plane and the angle is the initial phase shift.

When considering sin and cos specifically:
• They are infinitely differentiable
• When considering the space of continuous functions with inner product < 𝑓, 𝑔 >= ∫𝑏

𝑎
𝑓(𝑡)𝑔(𝑡)𝑑𝑡,

they are an orthogonal basis:

Orthogonal:

< sin, cos >= ∫
2𝜋

0
sin(𝑥) cos(𝑥)𝑑𝑥 = sin2(𝑥) |2𝜋

0

= 0
Linearly Independent:

𝛼 sin(𝑥) + 𝛽 cos(𝑥) = 0∀𝑥 ∈ [0, 2𝜋] ⇔ 𝛼 = 𝛽 = 0

TODO: Show that they span the entire space.

Here is the summary of the most popular forms of continuous Fourier transform analysis / synthesis
functions:

1.1 Negative Frequencies
These can give the notion of sinusoids progressing in the negative direction ie clockwise on the unit
circle. However, in many Fourier transforms they do not play a huge role and don’t appear as part of
the frequency spectrum. Nonetheless, it is necessary to include these frequencies in the analysis to
be able to characterize certain complex valued signals.

1.2 Analysis (Transform)
The goal here is to convert a time-domain signal 𝑓(𝑡) to a frequency → complex number (amplitude
and initial phase encoded) mapping, usually denoted as 𝑓(𝜔). This can then be used to analyze the
presence of specific frequencies / phase shifts in the signal (and when needed to modify the signal,
for example removing parasitic frequencies and resynthesize the signal).

I will consider the angular frequency version of this transform as it feels the most intuitive to me:

𝑓(𝜔) = ∫
∞

−∞
𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

This results in the Fourier transform 𝑓(𝜔) with a complex range. When we plot the radius against
frequency graph for all of these complex outputs, we arrive at the top left graph, which can be
extremely useful for identifying interesting or unwanted frequencies which are part of the signal:

Since the phase is usually not that interesting, it is often ignored unless we plan on synthesizing the
time domain signal again.

White Noise - A signal where each constituent frequency has equal amplitude.

1.2.1 How It Works - Dot Products
The analysis mechanism can be thought of as a dot product between the signal function 𝑓(𝑡) and
Fourier basis 𝑒𝑖𝜔𝑡 (or a different basis in other transforms) at a given frequency - a measure of how
much the basis at this frequency and phase shift “points in the same direction” as the signal.

Coherency - Constant phase difference due to the same frequency.

To simplify the process, consider the inner product of two cosine functions at frequency 𝜔1 and 𝜔2,
with phase shifts 𝜃 and 𝜑:

𝑓 ≔ cos(𝜔1𝑡 + 𝜃), 𝑔 ≔ cos(𝜔2𝑡 + 𝜑)

< 𝑓, 𝑔 >= ∫
𝑏

𝑎
𝑓(𝑡)𝑔(𝑡)𝑑𝑡

= ∫
∞

−∞
cos(𝜔1𝑡 + 𝜃) cos(𝜔2𝑡 + 𝜑)𝑑𝑡

Desmos: https://www.desmos.com/calculator/q8lihjtsur

Their inner product will clearly be at its maximum when the frequencies are equal (they are
coherent) and they are in phase; when this is the case they are positive at the same and also negative
at the same time, leading to a positive infinitesimal product at all times and a very large integral.
Because the signal is not periodic, we need to calculate this dot product over the entire sample
(interval (−∞, ∞)).

Replacing 𝑓(𝑡) with the time-domain signal and 𝑔(𝑡) with the complex conjugate of the unit circle
𝑒−𝑖𝜔𝑡 (which encodes both frequency and phase shift) we arrive at the Fourier transform equation:

𝑓(𝜔) = ∫
∞

−∞
𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

The angle of the summed complex numbers becomes the phase-shift for the transform at that
frequency. The complex plot of this has been visualized very well by 3B1B: https://www.youtube.
com/watch?v=spUNpyF58BY However, I found his explanation too beginner-friendly.

1.3 Synthesis (Inverse Transform)
We can also recreate the time domain signal from the complex frequency-domain transform:

𝑓(𝑡) = ∫
∞

−∞
𝑓(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔

This effectively calculates the superposition of all transformed frequencies at a specific point in time.

As seen previously 𝑓(𝜔) returns a complex number for each frequency in the form 𝑅𝑒(𝑖𝜃) where 𝑅
is the amplitude of the sinusoid and 𝜃 is that frequencies phase shift. When multiplied with 𝑒𝑖𝜔𝑡:

𝑓(𝜔)𝑒𝑖𝜔𝑡 = 𝑅𝑒𝑖𝜃𝑒𝑖𝜔𝑡

= 𝑅𝑒𝑖(𝜔𝑡+𝜃)

= 𝑅 cos(𝜔𝑡 + 𝜃) + 𝑖𝑅 sin(𝜔𝑡 + 𝜃)

We arrive at the following familiar 𝑅 cos(𝜔𝑡 + 𝜃) representation of a sinusoid for that given
frequency.

As these complex numbers are summed for all possible frequencies at a point in time (superposition
of the transforms), the imaginary components cancel each other out due to the orthogonality of sin

https://www.desmos.com/calculator/q8lihjtsur
https://www.youtube.com/watch?v=spUNpyF58BY
https://www.youtube.com/watch?v=spUNpyF58BY

and cos, resulting in a single real output for each point in time (unless the time-domain signal had
complex components in its values).

Gibbs phenomenon - Tendency of the Fourier transform to “overshoot” near peaks in the input signal

1.4 Discrete Fourier Transform
In our digital world we often work with discrete samples of a continuous signal.

Bin - Frequency intervals indexed by 0 to 𝑁 − 1, represented by 𝑘. If the signal was sampled at
frequency 𝑓𝑆 for a total of 𝑁 samples, the frequency bin 𝑘 represents frequencies 𝑓 ∈ [−1

2
𝑘𝑓
𝑁 , 1

2
𝑘𝑓
𝑁].

The higher the sampling rate, the more samples are collected and the smaller the interval of each
frequency bin ⇒ a better, albeit slower, analysis.

Whilst taking the dot product for a given frequency, we can of course only consider dimensions for
which we have a sample and therefore analyze intervals of frequencies, hence the Discrete
Fourier Transform Consider based on 𝑁 samples is:

𝑋𝑘 = ∑
𝑁−1

𝑛=0
𝑥𝑛𝑒−𝑖2𝜋 𝑘

𝑁𝑛

Inverse transform:

𝑥𝑛 = 1
𝑁

∑
𝑁−1

𝑘=0
𝑋𝑘𝑒𝑖2𝜋 𝑘

𝑁𝑛

Notice the frequency represented as 𝑘
𝑁 = Current bin

Number of Samples ∈ [0, 1[has no real-world meaning other
than a sense traversing through the range of possible frequencies in the signal. The sample rate of
the time-domain signal is not relevant during the Fourier analysis / synthesis and is reintroduced
based on the needs of the application, for example when plotting the frequency spectrum /
outputing the resynthesized signal. After all, Fourier analysis is just a change of basis, in this case in
a finite dimensional space.

Nyquist Theorem - The maximum frequency that can be accurately captured by sample rate of 𝑓𝑠 is
𝑓𝑠
2 . The middle frequency bin 𝑘 = 𝑁−1

2 is therefore called the Nyquist bin, and subsequent bins are
mirrors of the previous analysis (see Nyquist limit).

See ../../semester-1/lineare-algebra/notes.pdf for matrix implementation and the Fast
Fourier Transform.

TODO Move somewhere more relevant (Signals and Systems Semester 3?): Cool primer in digital
signal processing: https://jackschaedler.github.io/circles-sines-signals/ TODO:
• Nyquist frequency, crossing the limit, wagon wheel effect
• Analogue Spectrum analyzers

1.5 Fourier Series
This is the process of converting a periodic signal against time to the frequency domain and only
needs to be analyzed over 1 period.

TODO:
• Uncertainty principle
• Analyse how it is a change of basis in function space, decomposing any vector (any function) into

the unit vectors (𝑒𝑖𝜃) using dot product.

https://jackschaedler.github.io/circles-sines-signals/

2 Proposed Project: Digital Spectrum Analyzer
Goal: Demonstrate understanding of Fourier Analysis, Linear Algebra and learn C++ fundamentals

Description:
• Implement the discrete Fourier Transform + FFT analysis and synthesis algorithms in C++.
• Input signal as CSV / some standard file format and output Amplitude / Frequency plot +

synthesize back into time-domain signal to demonstrate quality of different sample rates.
• Interface into the real world by connecting to oscilloscope or even running on some

microcontroller and designing suitable host PCB with ADC etc. (explore area of high-frequency
electronics) Most likely only accurate for relatively low frequencies (for example the audible
range). It may be a good idea to connect it directly to a microphone and design some kind of audio
visualizer.

Tools:
• C++, Blaze or Eigen linear algebra library

	Fourier Transforms
	Negative Frequencies
	Analysis (Transform)
	How It Works - Dot Products

	Synthesis (Inverse Transform)
	Discrete Fourier Transform
	Fourier Series

	Proposed Project: Digital Spectrum Analyzer

